摘要:
In the first option of the present invention, a semiconductor structure is provided and an overlying titanium nitride barrier layer is deposited thereon at about 100° C. At least Al and Cu is sputtered over the titanium nitride barrier layer from about 270 to 300° C. to form an Al—Cu alloy containing metal layer. The sputtered Al—Cu alloy containing metal layer is promptly cooled at a cooling rate greater than about 100° C./minute to a temperature below 200° C. to form a Al—Cu alloy containing metal layer having minimal CuAl2 grain growth. The semiconductor structure is removed from the cooling chamber and the semiconductor structure is processed further below 200° C. to form semiconductor device precursors. In the second option of the present invention, a semiconductor structure having an overlying barrier layer is provided. At least Al and Cu is sputtered over the barrier layer at a first temperature to form an Al—Cu alloy containing metal layer having CuAl2 grains of a first average size. The semiconductor structure is processed and then heated to a second temperature to dissolve the CuAl2 grains of a first average size then rapidly cooling to a third temperature whereby the CuAl2 grains formed have a second average size within the Al—Cu alloy containing metal layer. The second average size CuAl2 grains being less than the first average size CuAl2 grains.
摘要:
A process of forming a thin, protective insulator layer, on the sides of metal interconnect structures, prior to the deposition of a halogen containing, low k dielectric layer, has been developed. The process features the growth of a thin metal nitride, or thin metal oxide layer, on the exposed sides of the metal interconnect structures, via a plasma treatment, performed in either a nitrogen containing, or in a water containing, ambient. The thin layer protects the metal interconnect structure from the corrosive, as well as delamination effects, created by the halogen, or halogen products, contained in overlying low k dielectric layers, such as fluorinated silica glass.
摘要:
In the presently disclosed invention, a method is provided to avoid damage to a copper interconnect while subjecting the interconnect to chemical-mechanical polishing (CMP). First, a copper barrier layer is formed in a damascene structure. Then, prior to the deposition of copper metal into the damascene openings, a barrier layer is formed on the inside walls of the damascene structure. In a first embodiment, the copper barrier layer is deposited at high temperature. Then, it is cooled down in a prescribed manner. Subsequently, a copper seed layer is formed over the barrier, which is followed by the electro-chemical deposition (ECD) of copper, to form the copper damascene interconnect. Alternatively, in a second embodiment, the copper layer is formed at low temperature. Then it is annealed at a high temperature, followed by wafer cooling. Subsequently, copper seed layer is formed over the barrier layer. Next, ECD copper is formed in the damascene structure. Finally, the interconnect so formed by either of the embodiments is subjected to CMP. It is found that, through the disclosed method of treatment of the barrier layer, process stresses that are normally formed within the barrier layer are relieved, and hence no damage is incurred during the final steps of chemical-mechanical polishing.
摘要:
In forming a semiconductor device in which an electrically conductive substrate is covered with a dielectric layer by the following steps, form a trench with a trench line on top and a contact hole on the bottom in the dielectric layer with the overall trench reaching down to the substrate. Preclean the trench. Form a tantalum film over the dielectric layer including the trench walls, covering the exposed the substrate surface. Fill grain boundaries of the tantalum film with at least one of tantalum oxide and tantalum nitride forming a filled tantalum film. Form a redeposited tantalum layer above the filled tantalum film. Form a copper seed film above the redeposited tantalum film. Plate the device filling the trench with a plated bulk copper layer on the seed film. Planarize the device to expose the top surface of the dielectric layer, removing surplus portions of the filled tantalum film, the copper seed film, and the bulk copper layer. The filled tantalum film is formed by exposing the tantalum to air under STP atmospheric conditions or by exposure to a nitrous oxide (N2O) gas in a plasma at a temperature of about 400° C.
摘要:
A method for forming an aluminum containing conductor layer. There is first provided a substrate. There is then formed over the substrate a titanium layer employing an ionized metal plasma bias sputtering method. Finally there is then formed upon the titanium layer an aluminum containing conductor layer. By employing the ionized metal plasma bias sputtering method for forming the titanium layer, the aluminum containing conductor layer is formed with an enhanced (111) crystallographic orientation. The method is particularly useful for forming aluminum containing conductor layers with enhanced electromigration resistance, even under circumstances where there is formed interposed between a titanium layer and an aluminum containing conductor layer a titanium nitride layer.
摘要:
In forming a semiconductor device in which an electrically conductive substrate is covered with a dielectric layer by the following steps, form a trench with a trench line on top and a contact hole on the bottom in the dielectric layer with the overall trench reaching down to the substrate. Preclean the trench. Form a tantalum film over the dielectric layer including the trench walls, covering the exposed the substrate surface. Fill grain boundaries of the tantalum film with at least one of tantalum oxide and tantalum nitride forming a filled tantalum film. Form a redeposited tantalum layer above the filled tantalum film. Form a copper seed film above the redeposited tantalum film. Plate the device filling the trench with a plated bulk copper layer on the seed film. Planarize the device to expose the top surface of the dielectric layer, removing surplus portions of the filled tantalum film, the copper seed film, and the bulk copper layer. The filled tantalum film is formed by exposing the tantalum to air under STP atmospheric conditions or by exposure to a nitrous oxide (N2O) gas in a plasma at a temperature of about 400° C.
摘要:
The present invention relates to a new structure and method for the passivation of copper electrical interconnects for the semiconductor industry. More particularly, the invention details a convenient method for completing the passivation of copper lines after they have been patterned by a dry etch process. The method includes the formation of a sandwich structure consisting of a bottom barrier layer, a copper layer and a top barrier layer. After the sandwich structure is patterned with a dry etch, for example, the resultant exposed copper sidewalls are then passivated by means of a barrier metal spacer process. The fully encapsulated copper lines are highly resistant to oxidation, which is an, otherwise, inherent problem associated with the lack of self passivation/exhibited by bare copper films.
摘要:
A new method of in-situ cleaning in a copper metallization process is described. A copper line is provided overlying a first insulating layer on a semiconductor substrate. A silicon nitride layer is deposited overlying the copper line. A second insulating layer is deposited overlying the silicon nitride layer. A via is opened through the second insulating layer to the silicon nitride layer wherein a polymer forms on the sidewalls of the via. The silicon nitride layer within the via is removed wherein the copper line underlying the silicon nitride layer is exposed within the via and whereby the exposed copper line is oxidized forming a copper oxide layer within the via. The via is cleaned within a deposition chamber wherein the cleaning comprises the following steps: first sputtering Argon into the via to remove the polymer, second pumping down the deposition chamber, and third flowing H2 and He gases into the via to reduce the copper oxide layer to copper. Thereafter, a barrier metal layer is deposited onto the third insulating layer and within the via using the same deposition chamber and maintaining vacuum. A copper layer is formed within the via overlying the barrier metal layer to complete the copper metallization in the fabrication of an integrated circuit device.
摘要:
In accordance with the objectives of the invention a new method is provided to create aluminum pads that overlay an electrical contact point. A layer of passivation is deposited over the surface that contains one or more electrical contact points, the layer of passivation is patterned thereby creating openings in the layer of passivation that overlay and align with one or more of the contact points. Under the first embodiment of the invention, a layer of AlCu is deposited over the patterned layer of passivation thereby including the openings that have been created in the layer of passivation. The deposited layer of AlCu is patterned and etched thereby creating the required AlCu bond pad. In addition to creating the required AlCu bond pad, the etch of the layer of AlCu also creates a pattern of dummy AlCu pads that are not in contact with any underlying points of electrical contact but that are located on the surface of the layer of passivation. The dummy AlCu pads counteract the above indicated effect of theta phase propagation that occurs during the AlCu etching resulting in a passivation layer that has a smooth surface and that therefore provides a good underlying layer for the created AlCu pads. Under the second embodiment of the invention, a layer of pure aluminum is sputter deposited over the passivation layer including the openings that has been created in the passivation layer. The deposited layer of aluminum is patterned and etched thereby creating the required aluminum pad.
摘要:
A method for increasing electromigration resistance within the metal stack layer of Wolfram plugs by applying air exposure or plasma treatment to the top surface of the first layer of metal within the metal stack layer that is formed on top of metal plugs. The remainder of the process of the formation of the metal stack layer is not affected by the present invention.