摘要:
A method is provided for improving the performance characteristics of the MOS devices contained within an integrated circuit that has been subjected to a rapid thermal anneal. After the rapid thermal anneal the integrated circuit is heated for more than about 30 minutes at a temperature of more than about 430.degree. C. in a gaseous atmosphere that contains hydrogen, typically forming gas.
摘要:
A buried contact junction is described. A gate silicon oxide layer is provided over the surface of a semiconductor substrate. A polysilicon layer is deposited overlying the gate oxide layer. A hard mask layer is deposited overlying the polysilicon layer. The hard mask and polysilicon layers are etched away where they are not covered by a mask to form a polysilicon gate electrode and interconnection lines wherein gaps are left between the gate electrode and interconnection lines. A layer of dielectric material is deposited over the semiconductor substrate to fill the gaps. The hard mask layer is removed. The polysilicon layer is etched away where it is not covered by a buried contact mask to form an opening to the semiconductor substrate. Ions are implanted to form the buried contact. A refractory metal layer is deposited overlying the buried contact and the polysilicon gate electrode and interconnection lines and planarized to form polycide gate electrodes and interconnection lines. The dielectric material layer is removed. An oxide layer is deposited and anisotropically etched to leave spacers on the sidewalls of the polycide gate electrodes and interconnection lines to complete the formation of a buried contact junction in the fabrication of an integrated circuit.
摘要:
The present invention discloses a method for forming a DRAM capacitor that has improved charge storage capacity by utilizing a deposition process wherein alternating layers of doped and undoped dielectric materials are first deposited, a deep UV type photoresist layer is then deposited on top of the oxide layers such that during a high density plasma etching process for the cell opening, acidic reaction product is generated by the photoresist layer when exposed to UV emission in an etch chamber such that the sidewall of the cell opening is etched laterally in an uneven manner, i.e., the doped dielectric layer being etched more severely than the undoped dielectric layer thus forming additional surface area and an improved charge storage capacity for the capacitor formed.
摘要:
In this structure, the lightly doped layers that form the upper portions of the source and drain regions extend inwards towards the gate region, thereby satisfying the design requirements of low area and high resistivity at the interface, but not outwards towards the poly/silicide conductors that make connection to the source and drain areas.
摘要:
A novel sequence of process steps is provided for forming void-free interlevel dielectric layers between closely spaced gate electrodes. Closely spaced gate electrodes having sidewall spacers are formed on a substrate. After using the sidewall spacers to form self-aligned source/drain contacts and self-aligned silicide contacts, the sidewall spacers are removed. By removing the sidewall spacers, the aspect ratio of the gap between adjacent closely spaced gate electrodes is substantially reduced (from greater than 5 to less than 2), thereby preventing voids during the subsequent deposition of an ILD layer.
摘要:
A method is disclosed for fabricating mixed analog/digital devices without incurring detrimental effects of high temperature forming of analog components such as capacitor and resistor on the silicide contacts of digital devices. Conversely, the possible adverse effects of silicide formation on the analog components is circumvented. These are accomplished by performing the silicidation of the FET device after forming the two electrode plates of the dual layer capacitor while protecting the capacitor with a capacitor protective oxide (CPO). In a second embodiment, local polysilicon (poly-Si) interconnect is formed simultaneously with the formation of the second plate of the capacitor, and the local interconnect is silicidated subsequently and simultaneously with the silicidation of the polysilicon gate and areas above the source/drain regions. In still another third embodiment, a high-value resistor is formed simultaneously with the forming of the second polysilicon electrode of the capacitor. The resistor is protected along with the capacitor by means of the CPO while the FET device area is silicidated.
摘要:
The outer box of a box-in-box alignment pattern can be difficult to see if implemented in damascene technology. The present invention solves this problem by forming its outline from a trench that is substantially deeper than the channel used to contain the damascene wiring. This trench is formed at the same time that first vias are etched so no extra processing steps are needed, only one extra mask. The metal used for the damascene wiring also lines the inside of the trench, resulting in a structure that is easily seen during the alignment step. These outer box trenches may be simple squares or they may be ring shaped (hollow squares). Three different embodiments of the invention are described.
摘要:
An LDD type of FET, based on the salicide process, is described. It is not subject to the possibility of short circuits occurring between the source and/or the drain region and the main substrate, by way of the lightly doped layer. In this structure, the lightly doped layers that form the upper portions of the source and drain regions extend inwards towards the gate region, thereby satisfying the design requirements of low area and high resistivity at the interface, but not outwards towards the poly/silicide conductors that make connection to the source and drain areas. A process for manufacturing this structure is described. An important difference between said process and the prior art is that the oxide spacers on the outside walls (away from the gate region) of the source/drain trenches are removed prior to the formation of the heavily doped portions of the source/drain, not after it.
摘要:
A method for forming, within a double well formation, an array of DRAM memory cells isolated from each other by shallow trench isolation (STI), each cell comprising a MOSFET access transistor and a storage trench capacitor. A top plate of said capacitor is the trench wall within a deep N-well portion of the double well and the bottom plate is formed of a doped polysilicon layer within the trench, which layer is partially separated from the trench sidewalls by a dielectric layer whose upper portion is removed to allow the formation of a autodiffused doped channel between said polysilicon plate and the source region of the access transistor. The method uses a single dielectric layer deposition to serve as both a gate a gate dielectric for the MOSFET and a capacitor dielectric and requires only a single deposition of polysilicon to serve as both the transistor gate electrode and a capacitor plate.
摘要:
A process enabling high density, DRAM semiconductor chips to be achieved, via formation of DRAM cells, in SOI segments, has been developed. The process features the formation of an SOI layer, propagating from a central node region of a semiconductor substrate, exposed in an opening in an insulator layer, and with the SOI layer extending, and overlying, a portion of the insulator layer, at a distance between about 4 to 5 um, from the central node region. Individual SOI segments are then formed via trimming of the SOI layer, via oxidation of unwanted regions of the SOI layer, followed by removal of these oxidized regions. The DRAM cell, at an area between about 0.28 to 0.32 um.sup.2 is next formed in the individual SOI segments.