Abstract:
The invention provides a signal processor that receives a signal containing information about an acoustic signal that is generated by at least one acoustic transmitter, that travels through an aerated fluid in a container, and that is received by at least one acoustic receiver arranged in relation to the container, including inside the container; and determines the gas volume fraction of the aerated fluid based at least partly on the speed of sound measurement of the acoustic signal that travels through the aerated fluid in the container. The signal processor also sends an output signal containing information about the gas volume fraction of the aerated fluid. The signal processor may be configured together with at least one acoustic transmitter, the at least one acoustic receiver, or both.
Abstract:
Apparatus for use in, or forming part of, a separation process to be implemented in separation processor technology, the apparatus comprising synthetic bubbles or beads configured with a polymer or polymer-based material functionalized to attach to a valuable material in a mixture so as to form an enriched synthetic bubbles or beads having the valuable material attached thereto, and also configured to be separated from the mixture based at least partly on a difference in a physical property between the enriched synthetic bubbles or beads having the valuable material attached thereto and the mixture.
Abstract:
The present invention provides a proppant or proppant mixture having insert materials configured for providing a mechanical or physical function in a well to hold open fissures or pathways created in formations caused by well fracking to allow a release of a hydrocarbon from the well, the insert materials being configured at least partly with beads having a functionalized polymer so as to form functionalized polymer proppants that are configured to respond to the hydrocarbon or other composition of matter released from the well, including water, and provide at least one chemical taggant containing an indication about the hydrocarbon or other composition of matter released from the well. The functionalized polymer may include a dual-monomer structure.
Abstract:
The present invention provides a proppant or proppant mixture having insert materials configured for providing a mechanical or physical function in a well to hold open fissures or pathways created in formations caused by well fracking to allow a release of a hydrocarbon from the well, the insert materials being configured at least partly with beads having a functionalized polymer so as to form functionalized polymer proppants that are configured to respond to the hydrocarbon or other composition of matter released from the well, including water, and provide at least one chemical taggant containing an indication about the hydrocarbon or other composition of matter released from the well. The functionalized polymer may include a dual-monomer structure.
Abstract:
A transportable modular system for enhanced minerals recovery from tailings lines and deposits, features two transportable mineral recovery modules (TMRM), each TMRM for transporting as a truck mounted module to a remote site as an independently-operable mineral recovery module, each TMRM to couple to another TMRM on-site at the remote site and used together to provide enhanced minerals recovery. One TMRM having a central engineered polymer mineral recovery module that receives tailings fluid having a mineral particle of interest, processes the tailings fluid using an engineered polymer configuration, and provides recovered mineral processing fluids having the mineral particle of interest and a tailings disposal fluid. One other TMRM is selected from a group of TMRMs that includes another central engineered polymer mineral recovery module, a tailings fluid management module, an additive/chemical treatment polymer management module, a tailings disposal module and a recovery mineral processing module.
Abstract:
The present invention provides new techniques related to magnetically controllable and/or steerable froth for use in separation processes of mineral-bearing ore and bitumen. Apparatus is provided featuring a processor configured to contain a fluidic medium having a material-of-interest and also having a surfactant with magnetic properties so as to cause the formation of a froth layer that contains at least some of the material-of-interest and is magnetically responsive; and a magnetic field generator configured to generate a magnetic field and provide non-mechanical mixing and steering/driving of the froth layer in the processor. The material-of-interest may be mineral-bearing ore particles or bitumen. The processor includes a flotation tank, a primary separation vessel (PSV), or a pipe, including a tailings pipeline. The pipe has a non-magnetic pipe section, and the magnetic field generator includes a magnetic coil arranged in relation to non-magnetic pipe section to generate the magnetic field and provide the non-mechanical mixing and steering/driving of the froth layer in the pipe.
Abstract:
The present invention provides a proppant or proppant mixture having insert materials configured for providing a mechanical or physical function in a well to hold open fissures or pathways created in formations caused by well fracking to allow a release of a hydrocarbon from the well, the insert materials being configured at least partly with beads having a functionalized polymer so as to form functionalized polymer proppants that are configured to respond to the hydrocarbon or other composition of matter released from the well, including water, and provide at least one chemical taggant containing an indication about the hydrocarbon or other composition of matter released from the well. The functionalized polymer may include a dual-monomer structure.
Abstract:
The present invention provides a proppant or proppant mixture having insert materials configured for providing a mechanical or physical function in a well to hold open fissures or pathways created in formations caused by well fracking to allow a release of a hydrocarbon from the well, the insert materials being configured at least partly with beads having a functionalized polymer so as to form functionalized polymer proppants that are configured to respond to the hydrocarbon or other composition of matter released from the well, including water, and provide at least one chemical taggant containing an indication about the hydrocarbon or other composition of matter released from the well. The functionalized polymer may include a dual-monomer structure.
Abstract:
The present invention provides a new and unique apparatus featuring a signal processor or processing module configured to: receive signaling containing information about a fluid flow passing through a pipe that is channelized causing flow variations in the fluid flow; and determine corresponding signaling containing information about a fluid flow characteristic of the fluid flow that depends on the flow variations caused in the fluid flow channelized, based upon the signaling received. The signal processor or processing module may be configured to provide the corresponding signaling, including where the corresponding signaling contains information about the fluid flow characteristic of the fluid flow channelized.
Abstract:
Apparatus is provided featuring a signal processor or processing module configured at least to: receive signaling containing information about coded and multiplexed voltages measured across pairs of electrodes in an array of electrodes configured in relation to a fluid processing structure, including a pipe, tank, vessel, vat or container, having a process fluid therein; and determine using a tomographic signal processing algorithm a tomographic indication of the process fluid, based at least partly on the signaling received. The signal processor module may be configured to provide corresponding signaling containing information about the tomographic indication of the process fluid. The tomographic indication includes a 2D or 3D image or visualization of the process fluid, including an analysis of mixing in multiphase flows, liquid interfaces or liquid-froth layers detected in the process fluid.