摘要:
One aspect of the present invention relates to a semiconductor transistor device with an annular gate surrounding, at least in part, a channel that conducts current between a first and second source/drain. Another aspect of the present invention relates to a semiconductor transistor device having an annular gate and containing a channel composed of a polymer material. Yet another aspect of the present invention relates to fabrication of a device utilizing a polymer channel surrounded, at least in part, by an annular gate. Still yet another aspect of the present invention relates to a system with a means to control (and/or amplify) current via an annular gate surrounding a channel which conducts current between a first and second source/drain. Still other aspects of the present invention include devices incorporating the present invention's devices, systems and methods such as computers, memory, handhelds and electronic devices.
摘要:
The present invention facilitates semiconductor devices by aiding the efficiency in the way individual devices change states in a semiconductor array. State change voltages can be applied to a single device in the array of semiconductor devices without the need for transistor-type voltage controls. The diodic effect of the present invention facilitates this activity by allowing specific voltage levels necessary for state changes to only occur at the desired device. In this manner, an array of devices can be programmed with varying data or states without utilizing transistor technology. The present invention also allows for an extremely efficient method of producing these types of devices, eliminating the need to manufacture costly external voltage controlling semiconductor devices.
摘要:
The present invention facilitates semiconductor devices by aiding the efficiency in the way individual devices change states in a semiconductor array. State change voltages can be applied to a single device in the array of semiconductor devices without the need for transistor-type voltage controls. The diodic effect of the present invention facilitates this activity by allowing specific voltage levels necessary for state changes to only occur at the desired device. In this manner, an array of devices can be programmed with varying data or states without utilizing transistor technology. The present invention also allows for an extremely efficient method of producing these types of devices, eliminating the need to manufacture costly external voltage controlling semiconductor devices.
摘要:
An organic memory device comprising two electrodes having a selectively conductive decay media between the two electrodes provides a capability to control a persistence level for information stored in an organic memory cell. A resistive state of the cell controls a conductive decay rate of the cell. A high and/or low resistive state can provide a fast and/or slow rate of conductive decay. One aspect of the present invention can have a high resistive state equating to an exponential conductive decay rate. Another aspect of the present invention can have a low resistive state equating to a logarithmic conductive decay rate. Yet another aspect relates to control of an organic memory device by determining a power state and setting a resistive state of an organic memory cell based upon a current power state and/or an imminent power state.
摘要:
A write-once read-many times memory device is made up of first and second electrodes, a passive layer between the first and second electrodes, and an active layer between the first and second electrode. The memory device is programmed by providing a charged species from the passive layer into the active layer. The memory device may be programmed to have for the programmed memory device a first erase activation energy. The present method provides for the programmed memory device a second erase activation energy greater than the first erase activation energy.
摘要:
Systems and methods employing at least one constant current source to facilitate programming of an organic memory cell and/or employing at least one constant voltage source to facilitate erasing of a memory device. The present invention is utilized in single memory cell devices and memory cell arrays. Employing a constant current source prevents current spikes during programming and allows accurate control of a memory cell's state during write cycles, independent of the cell's resistance. Employing a constant voltage source provides a stable load for memory cells during erase cycles and allows for accurate voltage control across the memory cell despite large dynamic changes in cell resistance during the process.
摘要:
A memory cell made of two electrodes with a controllably conductive media between the two electrodes is disclosed. The controllably conductive media contains an active low conductive layer and passive layer. The controllably conductive media changes its impedance when an external stimuli such as an applied electric field is imposed thereon. Methods of making the memory devices/cells, methods of using the memory devices/cells, and devices such as computers containing the memory devices/cells are also disclosed.
摘要:
A memory array includes first and second sets of conductors and a plurality of memory-diodes, each connecting in a forward direction a conductor of the first set with a conductor of the second set. An electrical potential is applied across a selected memory-diode, from higher to lower potential in the forward direction, intended to program the selected memory-diode. During this intended programming, each other memory-diode in the array has provided thereacross in the forward direction thereof an electrical potential lower than its threshold voltage. The threshold voltage of each memory-diode can be established by applying an electrical potential across that memory-diode from higher to lower potential in the reverse direction. By so establishing a sufficient threshold voltage, and by selecting appropriate electrical potentials applied to conductors of the array, problems related to current leakage and disturb are avoided.
摘要:
The present memory structure includes thereof a first conductor, a second conductor, a resistive memory cell connected to the second conductor, a first diode connected to the resistive memory cell and the first conductor, and oriented in the forward direction from the resistive memory cell to the first conductor, and a second diode connected to the resistive memory cell and the first conductor, in parallel with the first diode, and oriented in the reverse direction from the resistive memory cell to the first conductor. The first and second diodes have different threshold voltages
摘要:
System(s) and method(s) of improving and controlling memory cell data retention are disclosed. A particular pulse width and magnitude is generated and applied to a memory cell made of at least two electrodes with a controllably conductive media between the at least two electrodes. The current across the memory cell is detected and a lower input pulse is sent to the memory cell. Application of the lower pulse controls the data retention of the memory cell without disturbing the final programming state of the memory cell.