Abstract:
Controlled pore structure catalysts are disclosed that are active for catalyzing the partial oxidation of methane to CO and H2 and, advantageously, are capable of initiating the reaction without the need for an additional ignition source. A preferred catalyst comprises rhodium and samarium supported on an alumina or modified alumina support having certain surface area, pore volume, pore size and metal dispersion characteristics that permit light-off of the reaction at temperatures below 500null C. and with little or no use of an ignition agent. A method of partially oxidizing a light hydrocarbon to form synthesis gas, and a method of enhancing low-temperature light-off of the process are also described.
Abstract:
A family of supported hexagonal phase mixed metal oxide catalysts are disclosed that have the general formula M2.5LnRh6O13 (expressed as atomic ratios), wherein M refers to Group II elements such as Mg, Ca, Ba, Sr and Be or a Group VIII transition metal that can exist in a null2 oxidation state, such as Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Nb, Pd, Cd and Ta. Ln refers to the rare earth lanthanide group of elements, such as La, Yb, Sm and Ce. This family of catalysts demonstrate unexpected activity for efficiently catalyzing the net partial oxidation of methane in a short contact time reactor, with high selectivities for H2 product.
Abstract:
A process and catalyst are disclosed for the catalytic partial oxidation of light hydrocarbons to produce synthesis gas at superatmospheric pressures. A preferred catalyst used in the process includes a nickel-magnesium oxide solid solution and at least one promoter chosen from Cr, Mn, Mo, W, Sn, Re, Rh, Ru, Ir, Pt, La, Ce, Sm, Yb, Lu, Bi, Sb, In and P, and oxides thereof, carried on a refractory support.