Abstract:
A switched mode power supply may include circuitry configured to output a bias signal that turns off and on switching circuitry of the switched mode power supply. The circuitry may wait for a first time period determined by the bias signal, and output the bias signal to turn off the switching circuitry when the time period expires. In addition or alternatively, the circuitry may begin waiting for a second time period when the bias signal turns off the switching circuitry. The circuitry may turn on the switching circuitry either when energy in inductive storage circuitry is depleted or when the second time period expires.
Abstract:
A converter circuit includes an input filter including an input capacitor configured to filter electromagnetic interference from an input voltage. The converter circuit includes an output capacitor, a first inductor coupled to the input capacitor, a switch coupled to the first inductor and configured to control a level of current flowing in the first inductor, a coupling capacitor connected to the first inductor, and an output rectifier coupled between the coupling capacitor and the output capacitor. A damping circuit that is configured to damp a resonant frequency of the converter circuit is coupled in parallel with the coupling capacitor.
Abstract:
A method of operating a switching power converter includes operating the switching power converter in a boundary conduction mode when a switching frequency of a switch in the switching power converter is below a switching frequency threshold such than an on time of the switch is adjusted based on a desired output power of the switching power converter, and operating the switching power converter in a discontinuous conduction mode when the switching frequency of the switch is above the switching frequency threshold such that one or more of the on time of the switch and a switching period of the switch are adjusted based on the desired output power of the switching power converter and the on time of the switch is clamped at a minimum switch on time.
Abstract:
An apparatus includes a switched-mode converter circuit having an output configured to be coupled to at least one light-emitting device. The apparatus further includes a control circuit configured to generate a measure of a voltage magnitude of a time-varying voltage applied to an input of the switched-mode converter circuit and a measure of a dimming level to be applied to the at least one light-emitting device. The control circuit is configured to control a switch of the switched-mode converter circuit responsive to the generated measures. The control circuit may be implemented using functional units of a microcontroller.
Abstract:
A switched mode power supply may include circuitry configured to output a bias signal that turns off and on switching circuitry of the switched mode power supply. The circuitry may wait for a first time period determined by the bias signal, and output the bias signal to turn off the switching circuitry when the time period expires. In addition or alternatively, the circuitry may begin waiting for a second time period when the bias signal turns off the switching circuitry. The circuitry may turn on the switching circuitry either when energy in inductive storage circuitry is depleted or when the second time period expires.
Abstract:
A LED lamp includes a plurality of red LEDs and a plurality of blue LEDs, a phosphor covering at least the plurality of blue LEDs, where the lamp has an LPW of at least 200 in a steady state operation.
Abstract:
An apparatus includes a switched-mode converter circuit having an output configured to be coupled to at least one light-emitting device. The apparatus further includes a control circuit configured to generate a measure of a voltage magnitude of a time-varying voltage applied to an input of the switched-mode converter circuit and a measure of a dimming level to be applied to the at least one light-emitting device. The control circuit is configured to control a switch of the switched-mode converter circuit responsive to the generated measures. The control circuit may be implemented using functional units of a microcontroller.
Abstract:
A switched mode power supply may include circuitry configured to output a bias signal that turns off and on switching circuitry of the switched mode power supply. The circuitry may wait for a first time period determined by the bias signal, and output the bias signal to turn off the switching circuitry when the time period expires. In addition or alternatively, the circuitry may begin waiting for a second time period when the bias signal turns off the switching circuitry. The circuitry may turn on the switching circuitry either when energy in inductive storage circuitry is depleted or when the second time period expires.
Abstract:
A SEPIC driver circuit with low input current ripple is disclosed. Embodiments of the present invention provide a driver circuit that accommodates universal input, has a wide output voltage range and good efficiency. An LED lighting system using such as circuit is also disclosed. In at least some embodiments, the circuit is configured as a single-ended primary inductor converter circuit using a magnetic element, and a floating capacitor is connected between the input winding and the output winding of the magnetic element. In some embodiments, an inductor is also included at the DC input to the circuit. An output rectifier such as a diode can also be connected to the output winding of the magnetic element, and an output capacitor can be connected across the output of the circuit. An FET, a bipolar transistor, or a plurality of FETs can be used as the switching device.
Abstract:
A converter circuit includes an input filter including an input capacitor configured to filter electromagnetic interference from an input voltage. The converter circuit includes an output capacitor, a first inductor coupled to the input capacitor, a switch coupled to the first inductor and configured to control a level of current flowing in the first inductor, a coupling capacitor connected to the first inductor, and an output rectifier coupled between the coupling capacitor and the output capacitor. A damping circuit that is configured to damp a resonant frequency of the converter circuit is coupled in parallel with the coupling capacitor.