Abstract:
A solid state lighting apparatus can include a variable color input signal configured to indicate a target color of light output from the apparatus. A string current Pulse Width Modulation (PWM) controller circuit can be coupled to the variable color input signal, where the string current PWM controller circuit can be configured to generate a plurality of PWM signals having respective variable duty cycles to enable/disable respective particular string currents for respective variable times as the variable color input signal changes.
Abstract:
Lighting apparatus includes a first string of light-emitting diodes (LEDs) having a first terminal coupled to a current source and configured to produce a first correlated color temperature (CCT) and a second string of LEDs having a first terminal coupled to the current source and configured to produce a second CCT different from the first CCT. The lighting apparatus further includes a current control circuit coupled to second terminals of the first and second strings of LEDs and configured to vary a proportionality relationship between current levels in the first and second strings of LEDs responsive to variation in a current provided by the current source to the first terminals of the first and second strings of LEDs. The current control circuit may include a current mirror circuit and a control circuit configured to selectively enable and disable the current mirror circuit.
Abstract:
Lighting apparatus includes a first string of light-emitting diodes (LEDs) having a first terminal coupled to a current source and configured to produce a first correlated color temperature (CCT) and a second string of LEDs having a first terminal coupled to the current source and configured to produce a second CCT different from the first CCT. The lighting apparatus further includes a current control circuit coupled to second terminals of the first and second strings of LEDs and configured to vary a proportionality relationship between current levels in the first and second strings of LEDs responsive to variation in a current provided by the current source to the first terminals of the first and second strings of LEDs. The current control circuit may include a current mirror circuit and a control circuit configured to selectively enable and disable the current mirror circuit.
Abstract:
An apparatus includes a plurality of series-connected current control circuits configured to control a current therethrough responsive to at least one current reference signal and to be coupled in parallel with a load, such as a string of LEDs. The apparatus further includes a voltage control circuit configured to control respective voltages across respective ones of the current control circuits. In some embodiments, the voltage control circuit may be configured to individually adjust responses of the current control circuits responsive to the voltages across the current control circuits. In further embodiments, the voltage control circuit may include respective voltage limiters coupled across respective ones of the current control circuits.
Abstract:
A lighting fixture with a control system, a light source, and an image sensor is disclosed. The image sensor is configured to capture an image in response to an image capture signal. The light source emits light in response to a drive signal. The control system provides the drive signal to control the light emitted by the light source, and when an image needs to be captured, provides the image capture signal. When capturing an image, the control system may coordinate the drive signal and the image capture signal so that the image sensor captures the image when the light source is emitting light, if light is needed or desired. The control system may control the drive signal to control the light emitted by the light source or control other lighting fixtures in the lighting network based, at least in part, on information derived from one or more captured images.
Abstract:
A lighting fixture with a control system, a light source, and an image sensor is disclosed. The image sensor is configured to capture an image in response to an image capture signal. The light source emits light in response to a drive signal. The control system provides the drive signal to control the light emitted by the light source, and when an image needs to be captured, provides the image capture signal. When capturing an image, the control system may coordinate the drive signal and the image capture signal so that the image sensor captures the image when the light source is emitting light, if light is needed or desired. The control system may control the drive signal to control the light emitted by the light source or control other lighting fixtures in the lighting network based, at least in part, on information derived from one or more captured images.
Abstract:
A sensor module for a lighting fixture includes a light sensor and a sensor cover over the light sensor. The sensor cover includes a front surface and a light focusing surface opposite the front surface. The front surface is configured to face an area of interest that is generally illuminated by the lighting fixture. The light focusing surface is opposite the front surface and includes a number of lens sections, each of which is configured to focus light from a different portion of the area of interest toward the light sensor. By including a number of lens sections each focusing light from a different portion of the area of interest, a relatively large area of interest can be observed while maintaining desirable aesthetics of the sensor module.
Abstract:
A switched mode power supply may include circuitry configured to output a bias signal that turns off and on switching circuitry of the switched mode power supply. The circuitry may wait for a first time period determined by the bias signal, and output the bias signal to turn off the switching circuitry when the time period expires. In addition or alternatively, the circuitry may begin waiting for a second time period when the bias signal turns off the switching circuitry. The circuitry may turn on the switching circuitry either when energy in inductive storage circuitry is depleted or when the second time period expires.
Abstract:
A sensor module for a lighting fixture includes a light sensor and a sensor cover over the light sensor. The sensor cover includes a front surface and a light focusing surface opposite the front surface. The front surface is configured to face an area of interest that is generally illuminated by the lighting fixture. The light focusing surface is opposite the front surface and includes a number of lens sections, each of which is configured to focus light from a different portion of the area of interest toward the light sensor. By including a number of lens sections each focusing light from a different portion of the area of interest, a relatively large area of interest can be observed while maintaining desirable aesthetics of the sensor module.
Abstract:
A solid state lighting apparatus can include a variable color input signal configured to indicate a target color of light output from the apparatus. A string current Pulse Width Modulation (PWM) controller circuit can be coupled to the variable color input signal, where the string current PWM controller circuit can be configured to generate a plurality of PWM signals having respective variable duty cycles to enable/disable respective particular string currents for respective variable times as the variable color input signal changes.