Abstract:
A semiconductor light emitting device includes an LED and an associated recipient luminophoric medium that includes respective first through fourth luminescent materials that down-convert respective first through fourth portions of the radiation emitted by the LED to radiation having respective first through fourth peak wavelengths. The first peak wavelength is in the green color range and the second through fourth peak wavelengths are in the red color range. The second and third luminescent materials each emit light having a full-width half maximum bandwidth of at least 70 nanometers, while the fourth luminescent material emits light having a full-width half maximum bandwidth of less than 60 nanometers. Embodiments that only include three luminescent materials are also disclosed.
Abstract:
A semiconductor light emitting device includes an LED and an associated recipient luminophoric medium that includes respective first through fourth luminescent materials that down-convert respective first through fourth portions of the radiation emitted by the LED to radiation having respective first through fourth peak wavelengths. The first peak wavelength is in the green color range and the second through fourth peak wavelengths are in the red color range. The second and third luminescent materials each emit light having a full-width half maximum bandwidth of at least 70 nanometers, while the fourth luminescent material emits light having a full-width half maximum bandwidth of less than 60 nanometers. Embodiments that only include three luminescent materials are also disclosed.
Abstract:
A light emitting device includes a light emitting diode (“LED”) that emits light having a dominant wavelength in the blue color range, and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. The recipient luminophoric medium includes a green phosphor that down-converts the radiation emitted by the LED to radiation having a peak wavelength that is between about 525 nanometers and about 550 nanometers, a yellow phosphor having a wavelength peak that is between about 550 nanometers and about 580 nanometers, and a red (Ca1-x-ySrxEu2+y)SiAlN3 phosphor. The (Ca1-x-ySrxEu2+y)SiAlN3 phosphor has a europium content y of between about 0.003 and 0.009 and a strontium content x of between about 0.150 and 0.300.
Abstract:
A semiconductor light emitting device includes an LED and an associated recipient luminophoric medium that includes respective first through fourth luminescent materials that down-convert respective first through fourth portions of the radiation emitted by the LED to radiation having respective first through fourth peak wavelengths. The first peak wavelength is in the green color range and the second through fourth peak wavelengths are in the red color range. The second and third luminescent materials each emit light having a full-width half maximum bandwidth of at least 70 nanometers, while the fourth luminescent material emits light having a full-width half maximum bandwidth of less than 60 nanometers. Embodiments that only include three luminescent materials are also disclosed.
Abstract:
Light emitting devices include an LED that emits light having a dominant wavelength in the blue color range and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In these devices, the recipient luminophoric medium may include at least a green phosphor that down-converts the radiation emitted by the LED to radiation having a peak wavelength that is between about 525 nanometers and about 545 nanometers, a yellow phosphor that down-converts the radiation emitted by the LED to radiation having a peak wavelength that is between about 550 nanometers and about 570 nanometers, and a red (Ca1-x-ySrxEu2+y)SiAlN3 phosphor. The red (Ca1-x-ySrxEu2+y)SiAlN3 phosphor may have a europium content of at least 0.025.
Abstract:
A semiconductor light emitting device includes an LED and an associated recipient luminophoric medium that includes respective first through fourth luminescent materials that down-convert respective first through fourth portions of the radiation emitted by the LED to radiation having respective first through fourth peak wavelengths. The first peak wavelength is in the green color range and the second through fourth peak wavelengths are in the red color range. The second and third luminescent materials each emit light having a full-width half maximum bandwidth of at least 70 nanometers, while the fourth luminescent material emits light having a full-width half maximum bandwidth of less than 60 nanometers. Embodiments that only include three luminescent materials are also disclosed.
Abstract:
A light emitting device can include a solid state lighting source and a luminophoric medium for down-converting at least some of the radiation emitted by the solid state lighting source. The luminophoric medium may include a first material that down-converts the radiation emitted by the solid state lighting source to radiation having a first peak wavelength and that has a first decay time. The luminophoric medium may include a second material that down-converts the radiation emitted by the solid state lighting source to radiation having a second peak wavelength and that has a second decay time that is longer than the first decay time.
Abstract:
A light emitting device can include a solid state lighting source and a luminophoric medium for down-converting at least some of the radiation emitted by the solid state lighting source. The luminophoric medium may include a first material that down-converts the radiation emitted by the solid state lighting source to radiation having a first peak wavelength and that has a first decay time. The luminophoric medium may include a second material that down-converts the radiation emitted by the solid state lighting source to radiation having a second peak wavelength and that has a second decay time that is longer than the first decay time.
Abstract:
A light emitting device includes a light emitting diode (“LED”) that emits light having a dominant wavelength in the blue color range, and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. The recipient luminophoric medium includes a green phosphor that down-converts the radiation emitted by the LED to radiation having a peak wavelength that is between about 525 nanometers and about 550 nanometers, a yellow phosphor having a wavelength peak that is between about 550 nanometers and about 580 nanometers, and a red (Ca1-x-ySrxEu2+y)SiAlN3 phosphor. The (Ca1-x-ySrxEu2+y)SiAlN3 phosphor has a europium content y of between about 0.003 and 0.009 and a strontium content x of between about 0.150 and 0.300.