摘要:
A device for determining a position of an object (25) in a spatial region (28) comprises a light source (3), a light directing device (4-9), at least one reference signal detector (11, 12) and a detector arrangement (13, 14). The light source (3) generates a sequence of light pulses with a repetition rate. The light directing device (4-9) directs the sequence of light pulses into the spatial region (28) and, as a reference signal (20), to the at least one reference signal detector (11, 12). The detector arrangement (13, 14) detects a plurality of light signals (23, 24) which are reflected and/or scattered by the object (25) in the spatial region (28) into a plurality of different directions by reflection and/or scattering of the sequence of light pulses. The evaluation circuit (15) is coupled to the detector arrangement (13, 14) and the at least one reference signal detector (11, 12) and determines a phase difference (67) between the reference signal (20) and a signal component of at least one light signal (23, 24). The phase difference is determined based on the signal component which has a frequency that corresponds to a multiple of the repetition rate.
摘要:
A device for measuring a surface (2) comprises a light source (3), a light directing device (4-6), a detector arrangement (10) and an evaluation circuit (15). The light source (3) generates a sequence of light pulses with a repetition rate. The light directing device (4-6) is controllable to direct the sequence of light pulses onto a surface area (25) of the surface (2). The surface area may be selected from plural surface areas (25, 27). The detector arrangement is configured to receive at least one light signal (21-24) scattered and/or reflected by the surface area (25). The evaluation circuit (15) is coupled to the detector arrangement (10) and is configured to determine a phase difference between a reference signal (19) derived from the sequence of light pulses and a signal component of the at least one light signal (21-24), in order to determine a position of the surface area (25). In doing so, the phase difference is determined for the signal component which has a frequency corresponding to a multiple of the repetition rate.
摘要:
A device for measuring a surface (2) comprises a light source (3), a light directing device (4-6), a detector arrangement (10) and an evaluation circuit (15). The light source (3) generates a sequence of light pulses with a repetition rate. The light directing device (4-6) is controllable to direct the sequence of light pulses onto a surface area (25) of the surface (2). The surface area may be selected from plural surface areas (25, 27). The detector arrangement is configured to receive at least one light signal (21-24) scattered and/or reflected by the surface area (25). The evaluation circuit (15) is coupled to the detector arrangement (10) and is configured to determine a phase difference between a reference signal (19) derived from the sequence of light pulses and a signal component of the at least one light signal (21-24), in order to determine a position of the surface area (25). In doing so, the phase difference is determined for the signal component which has a frequency corresponding to a multiple of the repetition rate.
摘要:
A device for determining a position of an object (25) in a spatial region (28) comprises a light source (3), a light directing device (4-9), at least one reference signal detector (11, 12) and a detector arrangement (13, 14). The light source (3) generates a sequence of light pulses with a repetition rate. The light directing device (4-9) directs the sequence of light pulses into the spatial region (28) and, as a reference signal (20), to the at least one reference signal detector (11, 12). The detector arrangement (13, 14) detects a plurality of light signals (23, 24) which are reflected and/or scattered by the object (25) in the spatial region (28) into a plurality of different directions by reflection and/or scattering of the sequence of light pulses. The evaluation circuit (15) is coupled to the detector arrangement (13, 14) and the at least one reference signal detector (11, 12) and determines a phase difference (67) between the reference signal (20) and a signal component of at least one light signal (23, 24). The phase difference is determined based on the signal component which has a frequency that corresponds to a multiple of the repetition rate.
摘要:
An evaluation device for path length measurement configured to evaluate a measured signal representing an intensity of a sequence of pulses of electromagnetic radiation, particularly a sequence of light pulses, as a function of time, after the sequence has traveled through a path length to be measured. The sequence of light pulses is generated with a repetition rate by a radiation source, particularly a light source. The evaluation device is configured to evaluate a first component of the measured signal, which oscillates with a first frequency, and a second component of the measured signal, which the second component oscillates with a second frequency that is greater than the first frequency. The first frequency may correspond to the repetition rate or a multiple of the repetition rate. The second frequency may correspond to another multiple of the repetition rate.
摘要:
In an embodiment a method for position determination of an object (25) in a spatial area (28) is provided in which the object (25) is illuminated with at least one light beam (22, 27). The light beam (22, 27) does not cover the complete spatial area (28) and is guided into a part of the spatial area in which the object (25) is present depending on the position of the object (25). In another aspect a method for measuring a surface is provided.
摘要:
In an embodiment a method for position determination of an object in a spatial area is provided in which the object is illuminated with at least one light beam. The light beam does not cover the complete spatial area and is guided into a part of the spatial area in which the object is present depending on the position of the object. In another aspect a method for measuring a surface is provided.
摘要:
An evaluation device for path length measurement configured to evaluate a measured signal representing an intensity of a sequence of pulses of electromagnetic radiation, particularly a sequence of light pulses, as a function of time, after the sequence has traveled through a path length to be measured. The sequence of light pulses is generated with a repetition rate by a radiation source, particularly a light source. The evaluation device is configured to evaluate a first component of the measured signal, which oscillates with a first frequency, and a second component of the measured signal, which the second component oscillates with a second frequency that is greater than the first frequency. The first frequency may correspond to the repetition rate or a multiple of the repetition rate. The second frequency may correspond to another multiple of the repetition rate.
摘要:
An evaluation device, measuring arrangement and method for path length measurement. The evaluation device for path length measurement is configured to evaluate a measured signal which represents an intensity of a sequence of pulses of electromagnetic radiation as a function of time. The sequence of pulses has a repetition rate. The evaluation device is configured to determine a phase difference between a component of the measured signal, the component oscillating with a frequency, and a reference signal which oscillates with the frequency. For this purpose, the evaluation device generates, for example by frequency mixing, a first signal and a second signal which have another phase difference, such that the first signal and the second signal each oscillates with another frequency which is different from said frequency, and that the other phase difference has a predetermined relation to the phase difference.
摘要:
An evaluation device, measuring arrangement and method for path length measurement. The evaluation device for path length measurement is configured to evaluate a measured signal which represents an intensity of a sequence of pulses of electromagnetic radiation as a function of time. The sequence of pulses has a repetition rate. The evaluation device is configured to determine a phase difference between a component of the measured signal, the component oscillating with a frequency, and a reference signal which oscillates with the frequency. For this purpose, the evaluation device generates, for example by frequency mixing, a first signal and a second signal which have another phase difference, such that the first signal and the second signal each oscillates with another frequency which is different from said frequency, and that the other phase difference has a predetermined relation to the phase difference.