Abstract:
Methods are disclosed for reducing the variability of particulate emissions in an exhaust stream from an internal combustion engine using a lambda error and/or a NOx error to control an exhaust gas recirculation fraction and/or a mass charge flow control. The methods include operating a controller to adjust the engine gas recirculation fraction and/or the mass charge flow control.
Abstract:
A method and related apparatuses and systems for operating an engine that provides a high level of NOX to regenerate particulate matter deposited on a particulate filter. The method includes producing NOX in response to a NOX excess capacity value of a NOX reduction device. The method optionally includes determining that particulate matter exceeds an enhanced passive regeneration threshold amount before providing a high level of NOX. The method optionally includes producing a higher particulate emissions output value to warm the engine exhaust to bring an aftertreatment catalyst to an optimal operating temperature. The method can be implemented with a closed loop feedback controller, which may be configured to reduce particulate matter variation.
Abstract:
This disclosure provides a system and method for controlling internal combustion engine system to reduce operation variations among plural engines. The system and method utilizes single-input-single-output (SISO) control in which a single operating parameter lever is selected from among exhaust gas recirculation (EGR) fraction and charge air mass flow (MCF), and a stored reference value associated with the selected lever is adjusted for an operating point in accordance with a difference between a measured emissions characteristic and a pre-calibrated reference value of the emissions characteristic for that operating point. Adjusting the selected operating parameter lever towards the theoretical pre-calibrated reference value of the operating parameter lever for each of plural operating points can reduce engine-to-engine variations in engine out emissions.
Abstract:
This disclosure provides a system and method for controlling internal combustion engine system to reduce operation variations among plural engines. The system and method utilizes single-input-single-output (SISO) control in which a single operating parameter lever is selected from among exhaust gas recirculation (EGR) fraction and charge air mass flow (MCF), and a stored reference value associated with the selected lever is adjusted for an operating point in accordance with a difference between a measured emissions characteristic and a pre-calibrated reference value of the emissions characteristic for that operating point. Adjusting the selected operating parameter lever towards the theoretical pre-calibrated reference value of the operating parameter lever for each of plural operating points can reduce engine-to-engine variations in engine out emissions.
Abstract:
A method and related apparatuses and systems for operating an engine that provides a high level of NOX to regenerate particulate matter deposited on a particulate filter. The method includes producing NOX in response to a NOX excess capacity value of a NOX reduction device. The method optionally includes determining that particulate matter exceeds an enhanced passive regeneration threshold amount before providing a high level of NOX. The method optionally includes producing a higher particulate emissions output value to warm the engine exhaust to bring an aftertreatment catalyst to an optimal operating temperature. The method can be implemented with a closed loop feedback controller, which may be configured to reduce particulate matter variation.
Abstract:
Methods are disclosed for reducing the variability of particulate emissions in an exhaust stream from an internal combustion engine using a lambda error and/or a NOx error to control an exhaust gas recirculation fraction and/or a mass charge flow control. The methods include operating a controller to adjust the engine gas recirculation fraction and/or the mass charge flow control.