-
1.
公开(公告)号:US10755190B2
公开(公告)日:2020-08-25
申请号:US15382278
申请日:2016-12-16
Applicant: D-Wave Systems Inc.
Inventor: Alexandr M. Tcaciuc , Pedro A. de Buen , Peter D. Spear , Sergey V. Uchaykin , Colin C. Enderud , Richard D. Neufeld , Jeremy P. Hilton , J. Craig Petroff , Amar B. Kamdar , Gregory D. Peregrym , Edmond Ho Yin Kan , Loren J. Swenson , George E. G. Sterling , Gregory Citver
IPC: H01F7/06 , G06N10/00 , H03H3/00 , H01F41/04 , H01F13/00 , H03H7/42 , H05K1/02 , H01F41/076 , H03H1/00 , H05K1/16 , H01L39/14 , H01L39/02
Abstract: An electrical filter includes a dielectric substrate with inner and outer coils about a first region and inner and outer coils about a second region, a portion of cladding removed from wires that form the coils and coupled to electrically conductive traces on the dielectric substrate via a solder joint in a switching region. An apparatus to thermally couple a superconductive device to a metal carrier with a through-hole includes a first clamp and a vacuum pump. A composite magnetic shield for use at superconductive temperatures includes an inner layer with magnetic permeability of at least 50,000; and an outer layer with magnetic saturation field greater than 1.2 T, separated from the inner layer by an intermediate layer of dielectric. An apparatus to dissipate heat from a superconducting processor includes a metal carrier with a recess, a post that extends upwards from a base of the recess and a layer of adhesive on top of the post. Various cryogenic refrigeration systems are described.
-
公开(公告)号:US11064637B2
公开(公告)日:2021-07-13
申请号:US16218150
申请日:2018-12-12
Applicant: D-Wave Systems Inc.
Inventor: George E. G. Sterling , Gregory D. Peregrym , Edmond Ho Yin Kan
IPC: H05K9/00 , G01R33/035 , H01L27/18 , G06N10/00 , B82Y10/00
Abstract: A magnetic shielding system that includes a shield that is non-uniform in the axial direction and a shield cap that is non-uniform in the radial direction. Each shield in the system may have a magnetic permeability, thickness, and/or radius that varies in the axial direction to create low-reluctance paths that redirect flux away from a sample towards the ends of the shield. Each shield cap in the system may have a magnetic permeability and/or thickness that varies in the radial direction to create low-reluctance paths that redirect flux away from the sample towards shield walls. An inner shielding layer formed from a material of low permeability and moderate-to-high coercivity may be implemented as the innermost layer of a magnetic shielding system.
-
公开(公告)号:US20190182995A1
公开(公告)日:2019-06-13
申请号:US16218150
申请日:2018-12-12
Applicant: D-Wave Systems Inc.
Inventor: George E.G. Sterling , Gregory D. Peregrym , Edmond Ho Yin Kan
IPC: H05K9/00 , G06N10/00 , H01L27/18 , G01R33/035
Abstract: A magnetic shielding system that includes a shield that is non-uniform in the axial direction and a shield cap that is non-uniform in the radial direction. Each shield in the system may have a magnetic permeability, thickness, and/or radius that varies in the axial direction to create low-reluctance paths that redirect flux away from a sample towards the ends of the shield. Each shield cap in the system may have a magnetic permeability and/or thickness that varies in the radial direction to create low-reluctance paths that redirect flux away from the sample towards shield walls. An inner shielding layer formed from a material of low permeability and moderate-to-high coercivity may be implemented as the innermost layer of a magnetic shielding system.
-
公开(公告)号:US20170178018A1
公开(公告)日:2017-06-22
申请号:US15382278
申请日:2016-12-16
Applicant: D-Wave Systems Inc.
Inventor: Alexandr M. Tcaciuc , Pedro A. de Buen , Peter D. Spear , Sergey V. Uchaykin , Colin C. Enderud , Richard D. Neufeld , Jeremy P. Hilton , J. Craig Petroff , Amar B. Kamdar , Gregory D. Peregrym , Edmond Ho Yin Kan , Loren J. Swenson , George E.G. Sterling , Gregory Citver
IPC: G06N99/00 , H01L39/12 , H01L39/24 , H05K3/34 , H05K9/00 , F25B43/00 , H01L39/18 , H01F41/06 , H01F41/04 , H01F13/00 , F25B9/12 , H03H3/00 , H05K1/02
CPC classification number: G06N10/00 , H01F13/006 , H01F41/048 , H01F41/076 , H01L39/02 , H01L39/14 , H03H3/00 , H03H7/425 , H03H2001/005 , H05K1/0233 , H05K1/0245 , H05K1/16 , H05K2201/10287
Abstract: An electrical filter includes a dielectric substrate with inner and outer coils about a first region and inner and outer coils about a second region, a portion of cladding removed from wires that form the coils and coupled to electrically conductive traces on the dielectric substrate via a solder joint in a switching region. An apparatus to thermally couple a superconductive device to a metal carrier with a through-hole includes a first clamp and a vacuum pump. A composite magnetic shield for use at superconductive temperatures includes an inner layer with magnetic permeability of at least 50,000; and an outer layer with magnetic saturation field greater than 1.2 T, separated from the inner layer by an intermediate layer of dielectric. An apparatus to dissipate heat from a superconducting processor includes a metal carrier with a recess, a post that extends upwards from a base of the recess and a layer of adhesive on top of the post. Various cryogenic refrigeration systems are described.
-
-
-