Abstract:
This ionic liquid-containing laminate includes a porous layer having affinity with ionic liquids (C), said layer holding an ionic liquid-containing liquid (A) within voids therein, and a porous layer lacking affinity with ionic liquids (B). The porous layer having affinity with ionic liquids (C) may include an inorganic material (e.g., metal oxide particles having an average particle size of 0.001 to 10 μm on a number basis). The ionic liquid-containing liquid (A) may include an ionic liquid containing cations selected from ammonium, imidazolium and phosphonium cations, and anions selected from fluorine-containing anions, cyano-containing anions and amino acid-derived anions. The porous layer having affinity with ionic liquids (C) may include 1 to 100 volume parts of the ionic liquid-containing liquid (A) with respect to 100 volume parts of voids therein. The ionic liquid-containing laminate is easily formable, and is able to stably hold (or fix) the ionic liquid while maintaining said liquid in a liquid state.
Abstract:
Disclosed herein is a quantum dot composite that can maintain luminous efficiency per unit quantum dot even when a quantum dot concentration is high, and therefore can achieve a high emission intensity. The quantum dot composite includes: a matrix; and quantum dots dispersed in the matrix, wherein the matrix is composed of cellulose acetate having a compositional distribution index (CDI) of 3.0 or less, and a concentration of the quantum dots is 0.05 wt % or higher.
Abstract:
The present invention is to provide a cellulose acetate that has a low total degree of acetyl substitution and a degree of acetyl substitution at 6-position that is lower compared to the degrees of acetyl substitution at 2-position and 3-position of a glucose ring, and has excellent water solubility. A cellulose acetate having: a total degree of acetyl substitution of 0.4 or greater and 0.9 or less, a proportion of a degree of acetyl substitution at 6-position in the total degree of acetyl substitution of 0% or greater and 18% or less, and a light transmittance at 660 nm of 5% or greater in 4 wt. % aqueous solution.
Abstract:
The present invention provides a laminated body obtained by bonding a thinned glass plate and a resin film with an adhesive agent, the laminated body having excellent bending resistance. The laminated body according to an embodiment of the present invention comprising a structure having a glass plate with a thickness of 150 μm or less and a resin film laminated with an adhesive layer; the laminated body having a bending resistance based on a test below of 10 or greater. Bending Resistance Test: in the case where a set of operation includes bending a laminated body for 180° from a state where the laminated body is stretched, in a direction that makes a surface of a glass plate concave and a bending radius 3 mm and then stretching the laminated body again, an index of the bending resistance is the number of sets of the operation until the laminated body cracks when the operation was performed at a rate of 43 sets per minute.
Abstract:
A carbon dioxide separation membrane according to the present invention includes: an ionic liquid affinitive porous layer (C) having an ionic liquid-containing liquid (A) retained in voids; and an ionic liquid non-affinitive porous layer (B). The ionic liquid affinitive porous layer (C) may contain inorganic materials (for example, metal oxide particles having an average particle size of about 0.001 to 5 μm on a number basis). An average thickness of the ionic liquid affinitive porous layer (C) may be about from 0.01 to 10 μm. The ionic liquid affinitive porous layer (C) may include the ionic liquid-containing liquid (A) at a ratio from 0.1 to 99 parts by volume with respect to 100 parts by volume of voids. It may be a carbon dioxide separation membrane for fertilizing plants with carbon dioxide. The carbon dioxide separation membrane can reduce a size of the carbon dioxide concentrating device and enables smooth operation of the device.
Abstract:
A nutrient composition, a lipid metabolism-improving agent, and prophylactic and/or therapeutic agents typically for inflammatory bowel diseases, immune disorders, cancers, non-alcoholic steatohepatitis, obesity, diabetes, and hypercholesterolemia each contain a cellulose acetate having a total degree of acetyl substitution of 0.4 to 1.1. The cellulose acetate may be one having a compositional distribution index (CDI) of 2.0 or less, where the CDI is defined by the formula: CDI=(Measured value of half height width of chemical composition)/(Theoretical value of half height width of chemical composition) where the measured value of half height width of chemical composition represents a half height width of chemical composition determined by HPLC analysis of a cellulose acetate propionate prepared by propionylating all residual hydroxy groups of the cellulose acetate (sample), and the theoretical value of half height width of chemical composition=2.35482√{square root over (3*DPw*(DS/3)*(1−DS/3))}/DPw [Math. 1] where DS is the total degree of acetyl substitution; and DPw is a weight-average degree of polymerization determined by a GPC-light scattering method using a cellulose acetate propionate prepared by propionylating all residual hydroxy groups of the cellulose acetate (sample).
Abstract:
A cellulose acetate according to the present invention has a total degree of acetyl substitution of 0.4 to 1.1 and has a compositional distribution index (CDI) of 3.0 or less, where the CDI is specified by the formula: CDI=(Measured value of half height width of chemical composition)/(Theoretical value of half height width of chemical composition) where the measured value of half height width of chemical composition is a half height width of chemical composition determined by analyzing a cellulose acetate propionate by HPLC, where the cellulose acetate propionate is prepared by propionylating all residual hydroxy groups of the cellulose acetate (sample); and Theoretical value of half height width of chemical composition=2·35482√{square root over (3*DPw*(DS/3)*(1−DS/3))}{square root over (3*DPw*(DS/3)*(1−DS/3))}/DPw [Math. 1] where DS is the total degree of acetyl substitution; and DPw is a weight-average degree of polymerization determined by a GPC-light scattering method using a cellulose acetate propionate prepared by propionylating all residual hydroxy groups of the cellulose acetate (sample).
Abstract:
Provided is a novel cellulose derivative having excellent water resistance. This is a cellulose acylate oxoalkanoate which is a cellulose derivative corresponding to cellulose, except with substituents replacing part or all of hydrogen atoms in the hydroxy groups of the cellulose. The substituents includes a group represented by General Formula (1) and a group represented by General Formula (2). The cellulose acylate oxoalkanoate has a degree x of substitution with the group represented by General Formula (1), a degree y of substitution with the group represented by General Formula (2), and a degree z of unsubstitution, where x, y, and z meet conditions specified by Expressions (A), (B), and (C): 0.1≦x≦2.99 (A) 0.01≦y≦2.90 (B) z=3−x−y (C)
Abstract:
A hydrophilized cellulose acetate tow band according to the present invention includes a crimped cellulose acetate tow band, and a hydrophilizing component having an HLB value of 16 or more. The cellulose acetate tow band includes a cellulose acetate having a degree of substitution of 2.0 to 2.6. The cellulose acetate tow band has a total denier of 10000 to 40000 and is crimped in a number of crimps of 30 to 60 per inch. The hydrophilizing component is impregnated on the cellulose acetate tow band in an amount of 0.2 to 2 weight percent relative to the cellulose acetate tow band. The hydrophilized cellulose acetate tow band may further include a textile oil, where the textile oil is impregnated on the crimped cellulose acetate tow band in an amount of 0.2 to 2 weight percent relative to the cellulose acetate tow band, in addition to the hydrophilizing component having an HLB value of 16 or more.
Abstract:
A nutrient composition contains a cellulose acetate having a total degree of acetyl substitution of 0.4 to 1.1. The cellulose acetate may have a compositional distribution index (CDI) of 2.0 or less, where the CDI is specified by the formula: CDI=(Measured value of half height width of chemical composition)/(Theoretical value of half height width of chemical composition) where the measured value of half height width of chemical composition represents the half height width of chemical composition determined by HPLC analysis of a cellulose acetate propionate prepared by propionylating all residual hydroxy groups of the cellulose acetate (sample); and [Math. 1] the theoretical value of half height width of chemical composition =2. 35482√{square root over (3*DPw*(DS/3)*(1−DS/3))}/DPw where DS is the total degree of acetyl substitution; and DPw is a weight-average degree of polymerization determined by a GPC-light scattering method using a cellulose acetate propionate prepared by propionylating all residual hydroxy groups of the cellulose acetate (sample).