Abstract:
A power monitor includes a detecting circuit, a processing circuit, and a warning circuit. The detecting circuit detects a first abnormal condition of a primary side circuit and a second abnormal condition of a secondary side circuit. The processing circuit calculates a first class and a first occurring number of the first abnormal condition, and calculates a second class and a second occurring number of the second abnormal condition. The processing circuit determines whether the first occurring number is larger than a first predetermined number corresponding to the first class; if it is, the processing circuit outputs a first abnormal signal. The processing circuit determines whether the second occurring number is larger than a second predetermined number corresponding to the second class; if it is, the processing circuit outputs a second abnormal signal. The warning circuit outputs a warning signal according to the first or the second abnormal signal.
Abstract:
A power supply having an input and an output, includes a power converter coupled between the input and output of the power supply including at least one switch that is controlled by comparing a sensed voltage, the sensed voltage corresponding to a current flowing through the switch, to a reference voltage. A controller, in response to a change detected in a switching frequency of the switch, reduces audible noise generated by the power supply by at least one of: adjusting the reference voltage; adjusting the current sense voltage; or adjusting a resistance used to generate the sensed voltage.
Abstract:
The centrifugal channel device includes a channel body, a collecting unit and a waste liquid tank. The channel body includes a first surface and a second surface relatively disposed. The channel body includes a sample inlet, a sample channel, an isolation tank, a reagent inlet, a reagent channel and a mixing channel. The sample inlet is disposed on the first surface. The sample channel is connected to the sample inlet. The isolation tank is adjacently disposed and communicates with the sample channel. The reagent inlet is disposed on the first surface. The reagent channel is connected to the reagent inlet. One end of the mixing channel is connected with the sample channel and the reagent channel. The collecting unit has an opening and an overflow hole. The opening communicates with another end of the mixing channel. The waste liquid tank communicates with the opening of the collecting unit.
Abstract:
A flyback power converter includes a hybrid clamp circuit and a corresponding power management unit that substantially optimizes the performance of the flyback power converter in its entire line and load ranges. The clamp circuit, which is connected in parallel to a primary winding of the flyback transformer, includes a parallel combination of a capacitor and resistor that is connected in series with a parallel combination of a switch and a diode. By sensing the operating conditions, the power management circuit configures the clamp circuit either as a passive clamp or as an active clamp. In the passive-clamp configuration, the switch is kept turned off. In the active-clamp configuration, the switch operates with pulse-width modulation (PWM) which enables ZVS turn-on of the main switch.
Abstract:
A power monitor includes a detecting circuit, a processing circuit, and a warning circuit. The detecting circuit detects a first abnormal condition of a primary side circuit and a second abnormal condition of a secondary side circuit. The processing circuit calculates a first class and a first occurring number of the first abnormal condition, and calculates a second class and a second occurring number of the second abnormal condition. The processing circuit determines whether the first occurring number is larger than a first predetermined number corresponding to the first class; if it is, the processing circuit outputs a first abnormal signal. The processing circuit determines whether the second occurring number is larger than a second predetermined number corresponding to the second class; if it is, the processing circuit outputs a second abnormal signal. The warning circuit outputs a warning signal according to the first or the second abnormal signal.
Abstract:
Methods for flyback converters are provided. The method, adopted by a flyback converter circuit including a transformer, including: determining an output voltage output from a secondary circuit of the transformer; feeding a feedback voltage based on the output voltage from the secondary circuit back to a primary circuit of the transformer; increasing a current limit and a switching frequency of a primary current with the feedback voltage; and supplying the primary current to a primary winding of the transformer.
Abstract:
A power supply having an input and an output, includes a power converter coupled between the input and output of the power supply including at least one switch that is controlled by comparing a sensed voltage, the sensed voltage corresponding to a current flowing through the switch, to a reference voltage. A controller, in response to a change detected in a switching frequency of the switch, reduces audible noise generated by the power supply by at least one of: adjusting the reference voltage; adjusting the current sense voltage; or adjusting a resistance used to generate the sensed voltage.
Abstract:
A composite product testing system including a main management system, a test equipment and a burn-in apparatus is disclosed. The test equipment and the burn-in apparatus are both arranged in a burn-in chamber of the testing system. First, multiple tested products are respectively inserted in multiple gauges of the burn-in chamber, and a burn-in procedure is activated for providing an aging environment. The main management system controls one of the gauges to connect with the test equipment for the test equipment to perform testing on the tested product upon the connected gauge. After the testing is completed, the main management system then controls the gauge to disconnect from the test equipment and re-connect with the burn-in apparatus, so as to monitor the tested product upon the gauge during the burn-in procedure.
Abstract:
A flyback power converter includes a hybrid clamp circuit and a corresponding power management unit that substantially optimizes the performance of the flyback power converter in its entire line and load ranges. The clamp circuit, which is connected in parallel to a primary winding of the flyback transformer, includes a parallel combination of a capacitor and resistor that is connected in series with a parallel combination of a switch and a diode. By sensing the operating conditions, the power management circuit configures the clamp circuit either as a passive clamp or as an active clamp. In the passive-clamp configuration, the switch is kept turned off. In the active-clamp configuration, the switch operates with pulse-width modulation (PWM) which enables ZVS turn-on of the main switch.
Abstract:
A flyback power converter includes a hybrid clamp circuit and a corresponding power management unit that substantially optimizes the performance of the flyback power converter in its entire line and load ranges. The clamp circuit, which is connected in parallel to a primary winding of the flyback transformer, includes a parallel combination of a capacitor and resistor that is connected in series with a parallel combination of a switch and a diode. By sensing the operating conditions, the power management circuit configures the clamp circuit either as a passive clamp or as an active clamp. In the passive-clamp configuration, the switch is kept turned off. In the active-clamp configuration, the switch operates with pulse-width modulation (PWM) which enables ZVS turn-on of the main switch.