Abstract:
An ion sensor includes an ion detection element, a reference electrode that provides a reference point of a potential, and a solution in which an ion concentration can be changed in a sensing area of the ion detection element. The sensing area of the ion detection element is disposed in the solution. A method for detecting a target substance employs an ion sensor. The target substance bound to a label having a function of changing the amount of ions detectable by the ion sensor is introduced into the solution, and a change in the amount of ions is detected using the ion sensor.
Abstract:
A malfunction detection method detects a malfunction in an electronic control device. The electronic control device includes a normal power supply terminal connected to a normal power supply mounted on a vehicle, a starting power supply terminal connected to a starting power supply, a controller activated by supply of a normal voltage, and a wake-up circuit having a wake-up switch to open and close a power supply path from the normal power supply terminal to the controller. The wake-up circuit turns on the wake-up switch when a starting voltage input to the starting power supply terminal is equal to or greater than an ON threshold. The malfunction detection method includes determining by the controller that the wake-up switch has an ON sticking malfunction when the normal voltage is equal to or greater than a threshold and the starting voltage is less than the ON threshold.
Abstract:
A current sensor state determination device determines that an abnormality is caused in a current sensor when a sum of phase currents based on current detection values from each of the current sensors in three phases is greater than a first determination value, and determines that no abnormality is caused in the current sensor when the sum of phase currents is equal to or less than the first determination value. The state determination device determines that the current sensor is normal when it is determined that (i) no abnormality is caused in a preset electric angle range equal to or less than one electric-angle cycle of the rotating electric machine and (ii) a value of an electric current flowing in the rotating electric machine in a rotating coordinates system calculated based on the current detection value is equal to or greater than a second determination value.
Abstract:
A motor control device includes: a substrate on a heat sink; switching elements providing a power converter; a drive circuit IC having a pre-driver; a control circuit IC having a current control unit; first and second temperature detectors; and a temperature estimation unit of evaluation places. When the current control unit is halted after operation and is restarted after halt, the temperature estimation unit: stores estimated temperature and the first and second detected temperature at the halt; calculates, as an estimated gain, a ratio of a temperature difference at the halt to a temperature difference at restart; and estimates temperature at the restart based on a temperature difference obtained by multiplying a temperature difference between the first detected temperature and the estimated temperature at the halt by the estimated gain, and increased temperature.
Abstract:
A motor control device for controlling a multiphase brushless motor in a vector control manner includes: a current command value generation unit that generates q-axis and d-axis current command values; a controller that calculates q-axis and d-axis voltage command values; a saturation guard unit that corrects the q-axis or d-axis voltage command value to set a magnitude of a voltage vector of the q-axis or d-axis voltage command value to be equal to or smaller than a predetermined voltage guard value; and a current command value limiting unit that limits the q-axis or d-axis current command value using a current limit gain and a current guard value, which are calculated based on a voltage saturation amount as the magnitude of the voltage vector of the q-axis or d-axis voltage command value corrected by the saturation guard unit.
Abstract:
A rotary electric machine control apparatus controls driving of a motor, which generates assist torque in accordance with steering torque inputted by steering operation on a steering wheel. An abnormality detection part acquires a voltage detection value related to an operation parameter, which varies when the motor is being supplied with electric power. The abnormality detection part checks whether the voltage detection value is abnormal based on a variation of the voltage detection value over a predetermined period under a condition that the electric power is supplied to the motor and the steering member is being operated. It is thus possible to determine abnormality of the voltage detection value related to the operation parameter, which varies when the motor is in operation with electric power supply, without erroneous detection.
Abstract:
A power steering apparatus has a first actuator provided as a multi-phase rotating electric machine and disposed on a steering column side of an intermediate shaft and a second actuator disposed on a rack gear side thereof. A first ECU controls a drive of the first actuator and detects an abnormality of the first actuator. The first ECU changes an output of the first actuator based on a notification from a communication bus. The first ECU performs an initial diagnosis of the first actuator at a vehicle startup time for detecting abnormality, by supplying an electric power to the first actuator for not providing a torque to a steering wheel.
Abstract:
A motor control device for controlling a multiphase brushless motor in a vector control manner includes: a current command value generation unit that generates q-axis and d-axis current command values; a controller that calculates q-axis and d-axis voltage command values; a saturation guard unit that corrects the q-axis or d-axis voltage command value to set a magnitude of a voltage vector of the q-axis or d-axis voltage command value to be equal to or smaller than a predetermined voltage guard value; and a current command value limiting unit that limits the q-axis or d-axis current command value using a current limit gain and a current guard value, which are calculated based on a voltage saturation amount as the magnitude of the voltage vector of the q-axis or d-axis voltage command value corrected by the saturation guard unit.
Abstract:
A current sensor state determination device determines that an abnormality is caused in a current sensor when a sum of phase currents based on current detection values from each of the current sensors in three phases is greater than a first determination value, and determines that no abnormality is caused in the current sensor when the sum of phase currents is equal to or less than the first determination value. The state determination device determines that the current sensor is normal when it is determined that (i) no abnormality is caused in a preset electric angle range equal to or less than one electric-angle cycle of the rotating electric machine and (ii) a value of an electric current flowing in the rotating electric machine in a rotating coordinates system calculated based on the current detection value is equal to or greater than a second determination value.
Abstract:
A motor control device includes: a substrate on a heat sink; switching elements providing a power converter; a drive circuit IC having a pre-driver; a control circuit IC having a current control unit; first and second temperature detectors; and a temperature estimation unit of evaluation places. When the current control unit is halted after operation and is restarted after halt, the temperature estimation unit: stores estimated temperature and the first and second detected temperature at the halt; calculates, as an estimated gain, a ratio of a temperature difference at the halt to a temperature difference at restart; and estimates temperature at the restart based on a temperature difference obtained by multiplying a temperature difference between the first detected temperature and the estimated temperature at the halt by the estimated gain, and increased temperature.