摘要:
A dynamic quantity sensor includes a first substrate and a second substrate. The first substrate has one surface, another surface opposite to the one surface, and a depressed portion defining a thin portion. The second substrate has one surface attached to the first substrate and a recessed portion disposed corresponding to the depressed portion. At least a part of a first projection line obtained by projecting the recessed portion is disposed outside of a second projection line obtained by projecting a boundary line between side walls of the depressed portion and the thin portion. The thin portion disposed inside the periphery of the recessed portion provides a film portion which is displaceable corresponding to a physical quantity applied to the film portion, and a region sandwiched between the film portion and a portion connected to the periphery of the recessed portion provides a stress release region.
摘要:
A semiconductor device includes: a first substrate having connectors at a first surface; a second substrate bonded with the first substrate having through-holes in a stacking direction of the first and second substrates for respectively exposing the connectors; through-electrodes respectively arranged at through-holes and electrically connected with the connectors; and a protective film for integrally covering the through-electrodes. Frame-shaped slits are formed to respectively surround the through-holes when viewed in a normal direction with respect to the first surface of the first substrate. The protective film is separated by the slit into a region inside the slit and a region outside the slit.
摘要:
A manufacturing method of a semiconductor device, in which a vacuum-pressure airtight chamber is defined by a space between a first substrate and a recessed portion of a second substrate, includes preparing the first substrate and the second substrate both of which contain silicon, joining the two substrates together, performing a heat treatment to emit hydrogen gas from the airtight chamber, and generating OH groups on the substrates before the joining. In the joining of the substrates together, the OH groups are bonded together to generate covalent bonds, and in the heat treatment, a part on which the OH groups are generated is heated at a temperature rise rate of 1° C./sec or smaller until a temperature of the substrate increases to 700° C. or higher, and a heating temperature and heating time are adjusted to emit hydrogen gas from the airtight chamber.
摘要:
In a physical quantity sensor, a first substrate has a recess depressed from a second surface to provide a thin film section adjacent to a first surface, and a second substrate has a first surface bonded to the first surface of the first substrate, and has a hollow depressed from the first surface and facing the recess. The recess and the hollow have such sizes that a projected line defined by projecting an end of a bottom surface in the recess to the first surface of the first substrate surrounds an open end of the hollow. When the thin film section is displaced toward the hollow, a maximum tensile stress is generated at a position on a rear surface of the thin film section intersecting an extended line along a normal direction to the first surface of the first substrate and passing through the open end of the hollow.
摘要:
In a method for producing a semiconductor device having a through electrode structure, a masking material is formed so as to bridge over a through hole formed in a second semiconductor substrate, and a hole is formed in the masking material at a position corresponding to the through hole. A contact hole is formed in an insulating film via this hole. In such a method, even if there is a large level difference from the surface of the second semiconductor substrate to the bottom of the through hole, only the masking material bridged over the through hole is exposed by photolithography. Therefore, photolithography for a large level difference is not necessary. As a result, the hole can be formed in the masking material successfully, and the contact hole can be formed successively by an anisotropic dry etching via this hole, even in the case where etching for a large level difference is performed.
摘要:
A TMR element and a corrective AMR element are series-connected between a power supply and a ground. The resistance value of the corrective AMR element is set so as to offset an output error in the rotation angle of an external magnetic field, which is included in the resistance value of the TMR element. The resistance value of the corrective AMR element is smaller than that of the TMR element. An increased voltage can be applied from the power supply to the TMR element. It is possible to increase, in the resistance value of the TMR element, the amount of change that depends on the rotation angle of the external magnetic field. This makes it possible to increase, in the output of a magnetic sensor, the amount of change that depends on the rotation angle of the external magnetic field. The sensitivity of the magnetic sensor can be increased.
摘要:
In a method for producing a semiconductor device having a through electrode structure, a masking material is formed so as to bridge over a through hole formed in a second semiconductor substrate, and a hole is formed in the masking material at a position corresponding to the through hole. A contact hole is formed in an insulating film via this hole. In such a method, even if there is a large level difference from the surface of the second semiconductor substrate to the bottom of the through hole, only the masking material bridged over the through hole is exposed by photolithography. Therefore, photolithography for a large level difference is not necessary. As a result, the hole can be formed in the masking material successfully, and the contact hole can be formed successively by an anisotropic dry etching via this hole, even in the case where etching for a large level difference is performed.
摘要:
A semiconductor physical quantity sensor includes (i) a semiconductor substrate having a first conductive type, (ii) a diaphragm portion disposed in the semiconductor substrate, (iii) a sensing portion disposed in the diaphragm portion, (iv) a well layer having a second conductive type, and (v) a back flow prevention element. The well layer is disposed in a surface portion of the semiconductor substrate, and corresponds to the diaphragm portion. The back flow prevention element is provided by a MOSFET, a JFET, a MESFET, or a HEMT. The back flow prevention element includes two second conductive diffused portions and a gate electrode. The back flow prevention element is arranged on a first electrical wiring, which provides a passage for applying a predetermined voltage to the well layer from an external circuit. The back flow prevention element turns on based on a voltage applied to the gate electrode.
摘要:
A semiconductor device includes a sensor portion, a cap portion, and an ion-implanted layer. The sensor portion has a sensor structure at a surface portion of a surface. The cap portion has first and second surfaces opposite to each other and includes a through electrode. The surface of the sensor portion is joined to the first surface of the cap portion such that the sensor structure is sealed between the sensor portion and the cap portion. The ion-implanted layer is located on the second surface of the cap portion. The through electrode extends from the first surface to the second surface and is exposed through the ion-implanted layer.
摘要:
A TMR element and a corrective AMR element are series-connected between a power supply and a ground. The resistance value of the corrective AMR element is set so as to offset an output error in the rotation angle of an external magnetic field, which is included in the resistance value of the TMR element. The resistance value of the corrective AMR element is smaller than that of the TMR element. An increased voltage can be applied from the power supply to the TMR element. It is possible to increase, in the resistance value of the TMR element, the amount of change that depends on the rotation angle of the external magnetic field. This makes it possible to increase, in the output of a magnetic sensor, the amount of change that depends on the rotation angle of the external magnetic field. The sensitivity of the magnetic sensor can be increased.