Abstract:
The invention relates to a process for the preparation of semi-crystalline semi-aromatic polyamide by direct solid-state polymerization of a diamine-dicarboxylic acid salt, comprising steps of (a) providing at least two salts of terephthalic acid and diamine, wherein each of these diamine/terephthalic acid salts is in solid state and has a melting temperature of at least Tx, wherein Tx is at least 260° C.; (b) preparing a mixture of the diamine/terephthalic acid salts, while retaining the salts in solid state; and (c) heating the mixture obtained from step (b) in the solid state to a temperature (T-c) in the range from 200° C. to 260° C., under a pressure below the saturation vapor pressure of water at said temperature, thereby condensing and polymerizing the salts and forming a semi-crystalline semi-aromatic polyamide in solid form.
Abstract:
The present invention also relates to a process for preparing a diamine/dicarboxylic acid salt wherein the dicarboxylic acid comprises an aromatic dicarboxylic acid and is provided in a powder form; the diamine is provided in a liquid form gradually dosed to the dicarboxylic acid powder, while keeping the dicarboxylic acid powder in constant movement; the processing temperature is above 0° C. and below the boiling temperature of the diamine and the melting temperature of the acid and the salt, and the reaction mixture comprises at most 5 wt. % of water. The present invention also relates to an anhydrous diamine/dicarboxylic acid salt obtainable by the process according to invention, or any embodiment thereof as described above.
Abstract:
The present invention relates to a process for preparing a granular nylon salt material, wherein an aqueous mixture, comprising at least 65 wt. % of salt components, and at most 35 wt. % of an aqueous medium, the weight percentages (wt. %) being relative to the total weight of the aqueous mixture, is flashed from a pressure vessel via a flash valve into a flash chamber, thereby evaporating the aqueous medium in an amount sufficient to result in a residual moisture content of at most 7.5 wt. %, and forming a granular nylon salt material. The invention also relates to a process for preparing a nylon polymer, comprising direct solid state polymerization of the granular salt material prepared by flash granulation.
Abstract:
The present invention relates to a process for preparing a granular nylon salt material, wherein an aqueous mixture, comprising at least 65 wt. % of salt components, and at most 35 wt. % of an aqueous medium, the weight percentages (wt. %) being relative to the total weight of the aqueous mixture, is flashed from a pressure vessel via a flash valve into a flash chamber, thereby evaporating the aqueous medium in an amount sufficient to result in a residual moisture content of at most 7.5 wt. %, and forming a granular nylon salt material. The invention also relates to a process for preparing a nylon polymer, comprising direct solid state polymerization of the granular salt material prepared by flash granulation.
Abstract:
The invention relates to a process for preparing a salt from diamine and dicarboxylic acid, the process comprising contacting a diamine gas, having a gas temperature T-gas, with a dicarboxylic acid, thereby forming a reaction mixture comprising diamine/dicarboxylic acid salt, wherein the dicarboxylic acid and the reaction mixture are kept at a temperature T-mixture of at least 10° C. below the lowest of the melting temperature of the dicarboxylic acid (Tm-acid) and the melting temperature of the resulting diamine/dicarboxylic acid salt (Tm-salt). The invention also relates to a process for preparing a polyamide comprising preparing a salt from diamine and dicarboxylic acid.
Abstract:
The invention relates to a process for preparing a semi-aromatic polyamide from diamine and dicarboxylic acid, comprising steps of •(i) dosing a liquid diamine to an agitated powder comprising an aromatic dicarboxylic acid thereby forming a powder comprising a diamine/dicarboxylic acid salt (DD-salt), and •(ii) solid-state polymerizing the DD-salt to obtain the polyamide.