摘要:
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
摘要:
Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.
摘要:
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
摘要:
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
摘要:
A system includes an optical fiber situated to propagate a laser beam received from a laser source to an output of the optical fiber, a first cladding light stripper optically coupled to the optical fiber and situated to extract at least a portion of forward-propagating cladding light in the optical fiber, and a second cladding light stripper optically coupled to the optical fiber between the first cladding light stripper and the optical fiber output and situated to extract at least a portion of backward-propagating cladding light in the optical fiber.
摘要:
An optical amplifier, such as an optical waveguide amplifier (e.g., an optical fiber amplifier or a planar waveguide) or a non-guiding optical amplifier, that exhibits a net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation thereof is disclosed. In one aspect of the invention, an optical amplifier structure includes at least one optical amplifier having a length and a gain region. The at least one optical amplifier exhibits a net phase-mismatch that varies along at least part of the length thereof selected to at least partially reduce gain-induced phase-matching during operation thereof.
摘要:
The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of “invisible” gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.
摘要:
The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 103 to 104 (to ˜1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.
摘要:
A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system utilizes a fiber amplifier in a resonant cavity. An acousto-optic or electro-optic modulator is incorporated into the cavity in such a way that the energy stored in the gain medium is efficiently extracted in the form of high-peak-power, short-duration pulses. In addition, narrow bandwidth and linearly polarized output are simultaneously achieved. The light from the cavity is converted into the ultraviolet by frequency tripling, quadrupling, and/or quintupling the infrared light. The narrow bandwidth, or relatively pure light, is preserved with intracavity filtering, and the high peak light powers increase the efficiency of the nonlinear crystals in the frequency conversion stage.
摘要:
Methods, apparatus, and systems comprising a fiber-coupled laser and time-varying beam characteristics. A laser may generate an optical beam that is launched into one or more lengths of fiber, at least one of which comprises a confinement region that is optically coupled to an output. A perturbation device may modulate, through action upon the one or more lengths of fiber, a beam characteristic over a time period during which the laser is energized. A controller may cause the perturbation device to act upon the one or more lengths of fiber to impart a time-averaged beam characteristic and/or to induce a continuous variation in one or more beam characteristics during system use. A process monitor may sense a metric external to the optical system, and a feedback signal from the process monitor may be coupled into the controller. Dynamic beam characteristics may be modulated based on the feedback signal.