摘要:
A soot detecting apparatus includes: a high voltage generating unit for generating a high voltage; a discharge sensor which includes a pair of electrodes to be, disposed in an atmosphere to be detected, for causing a spark discharge at a discharge voltage dependent upon soot concentration in the atmosphere when the high voltage is applied across the pair of electrodes; a first detection unit for detecting a first discharge voltage value when the spark discharge occurs in the discharge sensor upon application of the high voltage of a predetermined voltage polarity; a first output unit for determining a first soot concentration value based on the first discharge voltage value; and a changeover unit for converting the predetermined voltage polarity to an opposite voltage polarity for causing reverse spark discharge at the pair of electrodes of the discharge sensor.
摘要:
A soot sensor includes an insulator having a through-hole and a center electrode provided in the through-hole of the insulator so that a leading end of the center electrode protrudes from a leading end of the insulator and faces a discharge gap. A heating member is embedded in the insulator, and the distance between the heating member and the leading end of the center electrode is at least 10 mm.
摘要:
An ammonia gas sensor which includes a solid electrolyte member (310) extending in an axial direction; a reference electrode (320) provided on the solid electrolyte member (310); and a detection electrode (331) and a selective reaction layer (340) provided on the solid electrolyte member (310). The detection electrode serves as a counterpart of the reference electrode (320). The detection electrode (331) contains a noble metal as a predominant component, and the selective reaction layer (340) contains a metal oxide as a predominant component.
摘要:
There is provided a fine particle sensor for detecting fine particles in exhaust gas, including an ion generating unit for generating ions by corona discharge, a charging unit for charging the fine particles by some of the generated ions, an ion trapping unit for trapping a remainder of the generated ions and a casing for accommodating therein the charging unit and the ion trapping unit in a given arrangement direction. The casing has a gas inlet hole and a gas outlet hole formed in a circumferential wall thereof so that the exhaust gas flows in the charging unit through the gas inlet hole and flows out of the ion trapping unit through the gas outlet hole. The gas inlet hole and the gas outlet hole are arranged in such a manner as to at least partially overlap each other when viewed in the given arrangement direction.
摘要:
A temperature sensor is provided. The temperature sensor includes: a temperature sensitive element having a temperature sensitive body and an element electrode wire; a sheath member having an external cylinder, the sheath member encompassing a sheath core wire to be bonded to the element electrode wire in the external cylinder; an enclosing member having a bottom-closed cylindrical shape extending in an axial direction, at least the temperature sensitive element and a bond portion of the element electrode wire and the sheath core wire being accommodated in an internal space of the bottom-closed cylindrical shape, and a holding member that is filled in the internal space, wherein an air gap is provided at least between an outer surface of the temperature sensitive body and the holding member so as to permit displacement of the temperature sensitive body in a direction intersecting the axial direction of the enclosing member.
摘要:
An object of the invention is to provide a resistor element that makes it possible to adjust the resistance value of a precursor easily in producing a resistance element having a target resistance value from the precursor, as well as to the precursor and a related resistance value adjusting method.A precursor 70 has a meandering resistance pattern formed on a front surface 11 of a substrate 10 as well as at least three trimming lines. The precursor 70 is configured so as to be defined by a geometric sequence that satisfies Inequality 0.5αk
摘要:
In an ammonia sensor (1), lead portions (7) and (9) are provided on an insulating substrate (5); a pair of comb-shaped electrodes (11) and (13) are connected to the lead portions (7) and (9), respectively; a sensitive layer (15) is provided on the comb-shaped electrodes (11) and (13); and a protective layer (17) is provided on the sensitive layer (15). Particularly, the sensitive layer (15) is formed of a gas-sensitive raw material predominantly containing ZrO2 and containing at least W in an amount of 2 to 40 wt. % as reduced to WO3.
摘要:
A particulate detection system (1, 2, 3) detects the quantity of particulates S contained in exhaust gas EG discharged from an internal combustion engine ENG and flowing through an exhaust pipe EP. The system (1, 2, 3) includes a detection section (10) attached to the exhaust pipe EP; and a drive processing circuit (201) electrically connected to the detection section (10), driving the detection section (10), and detecting and processing a signal Is from the detection section 10. The drive processing circuit (201) includes drive start delay means (S2, S3, S11, S12, S13, S22, S23) for delaying start of the drive of the detection section (10) until a start condition determined by the drive processing circuit (201) is satisfied after startup of the internal combustion engine ENG.
摘要:
In a temperature sensor (1), a pair of electrode wires (25) of a thermistor element (21) are formed of a material prepared by adding strontium to platinum or a platinum alloy and without addition of zirconia or a like oxide. Rear end portions of the electrode wires (25) formed of the above-mentioned material and front end portions of sheath core wires (3) are laser-welded to one another in an overlapping condition.
摘要:
An ohmic electrode for an SiC semiconductor includes a p-type Si layer formed on the surface of a p-type SiC semiconductor, and a metal silicide layer formed on the surface of the Si layer, the metal silicide layer being formed from a metal silicide such as PtSi. The p-type Si layer is preferably formed from p-type Si having a carrier concentration equal to or higher than that of the aforementioned p-type SiC. Preferably, the ohmic electrode is formed as follows: deposition of Si is performed; deposition of a metal silicide is performed by means of laser ablation; laser irradiation is performed to thereby improve ohmic properties and enhance adhesion between the result deposition layer and the p-type SiC semiconductor, and then further deposition of the metal silicide is performed by means of laser ablation.