摘要:
Hydrophobic α(1→4)glucopyranose polymers with enhanced degradation properties are described. Between the α(1→4)glucopyranose polymeric portion and the hydrophobic portion exists a linker portion having a chemistry that facilitates degradation of the polymer. Diester and carbonate ester linker chemistries are exemplified. Biodegradable matrices can be formed from these polymers, and the matrices can be used for the preparation of implantable and injectable medical devices wherein the matrix is capable of degrading in vivo at an increased rate. Matrices including and capable of releasing a bioactive agent in vivo are also described.
摘要:
Hydrophobic α(1→4)glucopyranose polymers with enhanced degradation properties are described. Between the α(1→4)glucopyranose polymeric portion and the hydrophobic portion exists a linker portion having a chemistry that facilitates degradation of the polymer. Diester and carbonate ester linker chemistries are exemplified. Biodegradable matrices can be formed from these polymers, and the matrices can be used for the preparation of implantable and injectable medical devices wherein the matrix is capable of degrading in vivo at an increased rate. Matrices including and capable of releasing a bioactive agent in vivo are also described.
摘要:
Silane-functionalized hydrophobic α(1→4)glucopyranose polymers and polymeric matrices are described. Biodegradable matrices can be formed from hydrophobic α(1→4)glucopyranose polymers with reactive pendent silyl ether groups. Reaction of the silyl ether groups provides improved matrix formation through bonding to a device surface of a device, polymer-polymer crosslinking, or both. Biodegradable matrices can be used for the preparation of implantable and injectable medical devices, including those that release a bioactive agent.
摘要:
Silane-functionalized hydrophobic α(1→4)glucopyranose polymers and polymeric matrices are described. Biodegradable matrices can be formed from hydrophobic α(1→4)glucopyranose polymers with reactive pendent silyl ether groups. Reaction of the silyl ether groups provides improved matrix formation through bonding to a device surface of a device, polymer-polymer crosslinking, or both. Biodegradable matrices can be used for the preparation of implantable and injectable medical devices, including those that release a bioactive agent.
摘要:
Described herein is a degradable linking agent of formula Photo1-LG-Photo2, wherein Photo1 and Photo2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
摘要:
Embodiments of the invention include linking agents including photo groups and vinyl groups and coatings and devices that incorporate such linking agents, along with related methods. Exemplary methods herein include methods of priming substrates and methods of coating substrates using compounds having the formula R1—X—R2, wherein R1 is a radical comprising a vinyl group, X is a radical comprising from about one to about twenty carbon atoms, and R2 is a radical comprising a photoreactive group. Embodiments herein also include linking agents having the formula R1—X—R2, wherein R1 is a radical comprising a vinyl group, X is a radical comprising from about one to about twenty carbon atoms, and R2 is a radical comprising a photoreactive group. Other embodiments are also included herein.
摘要:
Described herein is a degradable linking agent of formula Photo1-LG-Photo2, wherein Photo1 and Photo2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
摘要:
Described herein is a degradable linking agent that includes a core molecule with one or more charged groups; and one or more photoreactive groups covalently attached to the core molecule by one or more degradable linkers.
摘要:
The invention provides emulsion compositions that include a hydrophobic compound and an arylboronic acid. An exemplary emulsion comprises a hydrophobic polymer and a halogenated arylboronic acid. Use of an arylboronic acid provides the emulsion with exceptional stability. The stability provides advantages for the formation of articles formed from the emulsion, including microparticles, as well as other implantable or injectable medical articles having polymeric matrices.
摘要:
The invention provides emulsion compositions that include a hydrophobic compound and an arylboronic acid. An exemplary emulsion comprises a hydrophobic polymer and a halogenated arylboronic acid. Use of an arylboronic acid provides the emulsion with exceptional stability. The stability provides advantages for the formation of articles formed from the emulsion, including microparticles, as well as other implantable or injectable medical articles having polymeric matrices.