摘要:
A method of reducing icing-related engine misfires during operation of a vehicle is provided. The vehicle can include an engine and an engine control unit operable for at least partially controlling operation of the engine. The vehicle can further include a plurality of sensors in electrical communication with the engine control unit. The engine can include an air intake system and an exhaust system, wherein the air intake system can include a positive crankcase ventilation valve. The method includes predicting the presence of ice within the air intake system based upon an input to the engine control unit from at least one of the sensors.
摘要:
A method of reducing icing-related engine misfires during operation of a vehicle is provided. The vehicle can include an engine and an engine control unit operable for at least partially controlling operation of the engine. The vehicle can further include a plurality of sensors in electrical communication with the engine control unit. The engine can include an air intake system and an exhaust system, wherein the air intake system can include a positive crankcase ventilation valve. The method includes predicting the presence of ice within the air intake system based upon an input to the engine control unit from at least one of the sensors.
摘要:
A method of reducing icing-related engine misfires during operation of a vehicle is provided. The vehicle can include an engine and an engine control unit operable for at least partially controlling operation of the engine. The vehicle can further include a plurality of sensors in electrical communication with the engine control unit. The engine can include an air intake system and an exhaust system, wherein the air intake system can include a positive crankcase ventilation valve. The method includes predicting the presence of ice within the air intake system based upon an input to the engine control unit from at least one of the sensors.
摘要:
Methods and systems for monitoring engine coolant temperature sensors are described. In one embodiment, an expected engine coolant temperature may be determined based on the accumulated engine mass air flow. If the current engine coolant temperature is substantially different from the expected temperature, then an error signal may be generated. In one embodiment, the expected engine coolant temperature is compared to the actual engine coolant temperature if the engine coolant temperature has changed by a predetermined amount. In one embodiment, the expected engine coolant temperature is compared to the actual engine coolant temperature if the accumulated engine mass air flow is equal to or is greater than a predetermined value.
摘要:
A system and method of compensating for torque converter slip in a motor vehicle include measuring rotational speeds of an engine crankshaft and mainshaft, as well as measuring operating temperatures of a fluid associated with the motor vehicle. Engine output torque is adjusted as required by controlling some combination of ignition timing, intake air flow, fuel injection, and accessory load.
摘要:
A system and method of compensating for torque converter slip in a motor vehicle include measuring rotational speeds of an engine crankshaft and mainshaft, as well as measuring operating temperatures of a fluid associated with the motor vehicle. Engine output torque is adjusted as required by controlling some combination of ignition timing, intake air flow, fuel injection, and accessory load.
摘要:
An engine control system and method for controlling engine air flow during a deceleration fuel cut includes an internal combustion engine, an anti-lock braking system (ABS), and an electronic control unit (ECU) that controls the engine. The ECU establishes a desired air flow rate for the internal combustion engine, which is taken from an ABS failed condition look-up table when determined that the ABS has failed while the engine is in a deceleration fuel cut mode, and otherwise is taken from a normal condition look-up table.
摘要:
Methods and systems for monitoring engine coolant temperature sensors are described. In one embodiment, an expected engine coolant temperature may be determined based on the accumulated engine mass air flow. If the current engine coolant temperature is substantially different from the expected temperature, then an error signal may be generated. In one embodiment, the expected engine coolant temperature is compared to the actual engine coolant temperature if the engine coolant temperature has changed by a predetermined amount. In one embodiment, the expected engine coolant temperature is compared to the actual engine coolant temperature if the accumulated engine mass air flow is equal to or is greater than a predetermined value.
摘要:
A method of controlling an engine during starting is disclosed. During cold starting and following a refueling, a default alcohol value is used to control various systems associated with the engine, including fuel injection and ignition timing. The default alcohol value is used to ensure reliable starting. During non-cold starting and following a refueling, the current alcohol value is used to minimize fuel inefficiencies.
摘要:
An engine control system and method for controlling engine air flow during a deceleration fuel cut includes an internal combustion engine, an anti-lock braking system (ABS), and an electronic control unit (ECU) that controls the engine. The ECU establishes a desired air flow rate for the internal combustion engine, which is taken from an ABS failed condition look-up table when determined that the ABS has failed while the engine is in a deceleration fuel cut mode, and otherwise is taken from a normal condition look-up table.