摘要:
A system for testing an integrated circuit, and particularly a gate array, is disclosed which includes, prior to coupling the array to form a user-designed circuit, predesigned logic that enables testing of the user-designed circuit. The predesigned logic allows logic blocks in the array to operate in “freeze” mode or to operate in normal mode, where normal mode is defined by the user-designed circuit. Much of the same circuitry in the logic blocks is, in fact, used in both modes of operation, thus minimizing circuitry added due to test. When the logic blocks are selected to be frozen, the logic blocks behave as a series of daisy-chained master-slave flip-flops. Stimulus data is shifted into the array and captured data is shifted out of the array through the daisy-chained flip-flops. Nonetheless, when data is shifted into and out of the daisy-chained flip-flops, the master latch and the slave latch of each flip-flop can be set to receive independent values and the data captured by each of the master and slave latches can be independently shifted out and analyzed. Although when frozen, the logic blocks behave as daisy-chained flip-flops, use of the logic blocks for testing purposes does not depend upon placement of sequential elements in the user-designed circuit in the logic blocks. In other words, in normal mode, a logic block can implement combinational, sequential, or other functions and still later be used to drive out stimulus values or capture results. Moreover, each logic block is further equipped for addressable mode control, allowing selected logic blocks to be exercised in isolation once stimulus data is shifted in, simplifying test generation and improving fault coverage. Using a logic block in accordance with the invention results in a high level of fault coverage, while placing few limitations on the user's circuit design.
摘要:
A system for testing an integrated circuit, and particularly a gate array, is disclosed which includes, prior to coupling the array to form a user-designed circuit, predesigned logic that enables testing of the user-designed circuit. The predesigned logic allows logic blocks in the array to operate in “freeze” mode or to operate in normal mode, where normal mode is defined by the user-designed circuit. When the logic blocks are selected to be frozen, the logic blocks behave as a series of daisy-chained master-slave flip-flops. In normal mode, a logic block can implement combinational, sequential, or other functions and still later be as a master-slave flip-flop. Moreover, each logic block is further equipped for addressable mode control, allowing selected logic blocks to be exercised in isolation once stimulus data is shifted in, simplifying test generation and improving fault coverage.
摘要:
A gate array in accordance with the invention includes a matrix of function blocks capable of being configured to implement combinational, sequential, and memory modes of operation, as well as providing tri-state drivers and buffers in useful numbers. The function block includes a logic circuit with a first bit storage unit, which is selectively configurable to behave as combinational logic or to store a first bit, and a second bit storage unit, which is also selectively configurable to behave as combinational logic or to store a second bit. The matrix of function blocks in accordance with the invention is also useful to properly distribute clocks throughout the gate array.
摘要:
A gate array in accordance with the invention includes a matrix of function blocks capable of being configured to implement combinational, sequential, and memory modes of operation, as well as providing tri-state drivers and buffers in useful numbers. The function block includes a logic circuit with a first bit storage unit, which is selectively configurable to behave as combinational logic or to store a first bit, and a second bit storage unit, which is also selectively configurable to behave as combinational logic or to store a second bit. The matrix of function blocks in accordance with the invention is also useful to properly distribute clocks throughout the gate array.
摘要:
A customizable ASIC routing architecture is provided. The architecture utilizes the uppermost metal layers of an ASIC composed of an array of function blocks for routing among function blocks while lower layers are used for local interconnections within the function blocks. The second-to-uppermost metal layer is fixed and generally includes a plurality of parallel segmented conductors extending in a first direction. The uppermost metal layer is customizable in a predesignated manner. Metal in the uppermost metal layer is selectively placed in tracks, which are substantially perpendicular to the segmented conductors in the layer below. Vias are provided between the two uppermost layers. One embodiment of the invention permits one-mask customization of an ASIC.
摘要:
A method for forming an application specific integrated circuit, comprises receiving a circuit design for the application specific integrated circuit from a designer; performing an initial place and route layout of the circuit design which leaves a group of buffer modules unused, based upon a partially predesigned integrated circuit, in which the partially predesigned integrated circuit includes a plurality of logic modules and a plurality of buffer modules uniformly distributed amongst the logic modules; evaluating load and timing characteristics for the initial place and route layout of the circuit design; and integrating buffer modules from the group of unused buffer modules into the circuit design, based on the load and timing characteristics evaluated. A gate array, for forming the application specific integrated circuit in accordance with the invention includes a matrix of function blocks capable of being configured to implement combinational, sequential, and memory modes of operation, as well as providing tri-state drivers and buffers in useful numbers.
摘要:
A customizable ASIC routing architecture is provided. The architecture utilizes the uppermost metal layers of an ASIC composed of an array of function blocks for routing among function blocks while lower layers are used for local interconnections within the function blocks. The second-to-uppermost metal layer is fixed and generally includes a plurality of parallel segmented conductors extending in a first direction. The uppermost metal layer is customizable in a predesignated manner. Metal in the uppermost metal layer is selectively placed in tracks, which are substantially perpendicular to the segmented conductors in the layer below. Vias are provided between the two uppermost layers. One embodiment of the invention permits one-mask customization of an ASIC. Other embodiments allow a determination to be made of the ideal number of custom mask steps, taking into consideration performance, cost, time, and routability.
摘要:
A bus structure providing pipelined busing of data between logic circuits and special-purpose circuits of an integrated circuit, the bus structure including a network of pipelined conductors, and connectors selectively joining the pipelined conductors between the special-purpose circuits, other pipelined connectors, and the logic circuits.
摘要:
An integrated circuit (IC) includes a substrate that is common to the IC and variants of the IC. The IC also includes a first set of interconnect layers fabricated above the substrate. The first set of interconnect layers is used to couple programmable interconnect of the IC to a first circuit in the substrate. The IC further includes a second set of interconnect layers fabricated above the substrate. The second set of interconnect layers is used to differentiate features of the IC from variants of the IC by selectively coupling the programmable interconnect to a second circuit in the substrate.
摘要:
A bus structure providing pipelined busing of data between logic circuits and special-purpose circuits of an integrated circuit, the bus structure including a network of pipelined conductors, and connectors selectively joining the pipelined conductors between the special-purpose circuits, other pipelined connectors, and the logic circuits.