摘要:
Structures including a refractory metal collar at a copper wire and dielectric layer liner-less interface, and a related method, are disclosed. In one embodiment, a structure includes a copper wire having a liner-less interface with a dielectric layer thereabove; a via extending upwardly from the copper wire through the dielectric layer; and a refractory metal collar extending from a side of the via and partially along the liner-less interface. Refractory metal collar prevents electromigration induced slit voiding by improving the interface around the via, and prevents void nucleation from occurring near the via. Also, the refractory metal collar provides electrical redundancy in the presence of voids around the via and dielectric layer liner-less interface.
摘要:
Structures including a refractory metal collar at a copper wire and dielectric layer liner-less interface, and a related method, are disclosed. In one embodiment, a structure includes a copper wire having a liner-less interface with a dielectric layer thereabove; a via extending upwardly from the copper wire through the dielectric layer; and a refractory metal collar extending from a side of the via and partially along the liner-less interface. Refractory metal collar prevents electromigration induced slit voiding by improving the interface around the via, and prevents void nucleation from occurring near the via. Also, the refractory metal collar provides electrical redundancy in the presence of voids around the via and dielectric layer liner-less interface.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.
摘要:
An interconnect structure including an alloy liner positioned directly between a diffusion barrier and a Cu alloy seed layer as well as methods for forming such an interconnect structure are provided. The alloy liner of the present invention is formed by thermally reacting a previously deposited diffusion barrier metal alloy layer with an overlying Cu alloy seed layer. During the thermal reaction, the metal alloys from both the diffusion barrier and the Cu alloys seed layer react forming a metal alloy reaction product between the diffusion barrier and the Cu seed layer.
摘要:
An interconnect structure including an alloy liner positioned directly between a diffusion barrier and a Cu alloy seed layer as well as methods for forming such an interconnect structure are provided. The alloy liner of the present invention is formed by thermally reacting a previously deposited diffusion barrier metal alloy layer with an overlying Cu alloy seed layer. During the thermal reaction, the metal alloys from the both the diffusion barrier and the Cu alloys seed layer react forming a metal alloy reaction product between the diffusion barrier and the Cu seed layer.
摘要:
An interconnect structure having reduced electrical resistance and a method of forming such an interconnect structure are provided. The interconnect structure includes a dielectric material including at least one opening therein. The at least one opening is filled with an optional barrier diffusion layer, a grain growth promotion layer, an agglomerated plating seed layer, an optional second plating seed layer a conductive structure. The conductive structure which includes a metal-containing conductive material, typically Cu, has a bamboo microstructure and an average grain size of larger than 0.05 microns. In some embodiments, the conductive structure includes conductive grains that have a (111) crystal orientation.
摘要:
An interconnect structure having reduced electrical resistance and a method of forming such an interconnect structure are provided. The interconnect structure includes a dielectric material including at least one opening therein. The at least one opening is filled with an optional barrier diffusion layer, a grain growth promotion layer, an agglomerated plating seed layer, an optional second plating seed layer a conductive structure. The conductive structure which includes a metal-containing conductive material, typically Cu, has a bamboo microstructure and an average grain size of larger than 0.05 microns. In some embodiments, the conductive structure includes conductive grains that have a (111) crystal orientation.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.
摘要:
A method of forming a diffusion barrier for use in semiconductor device manufacturing includes depositing, by a physical vapor deposition (PVD) process, an iridium doped, tantalum based barrier layer over a patterned interlevel dielectric (ILD) layer, wherein the barrier layer is deposited with an iridium concentration of at least 60 atomic % such that the barrier layer has a resulting amorphous structure.