摘要:
A magnetic disk drive head is disclosed including a write head, which includes a P1 layer having a pedestal portion, a gap layer formed on the P1 layer, and a P2 layer formed on the gap layer. The P1 layer includes a shoulder formation having a neck portion and a beveled portion. Also disclosed is a disk drive having a write head with a P1 layer with shoulder formation, and a method for fabricating a write pole for a magnetic recording head having a P1 layer with shoulder formation.
摘要:
A magnetic write head for perpendicular magnetic data recording. The write head includes a substrate and a magnetic write pole formed on the substrate, the write pole having a trailing edge and first and second sides. A magnetic stitched pole is formed over a portion of the magnetic write pole, the stitched pole having a front edge that defines a secondary flare point. First and second non-magnetic side walls are formed at the first and second sides of the write pole. The non-magnetic side walls extend from the substrate at least to the trailing edge of the write pole in a first region near an air bearing surface and wherein the first and second non-magnetic side walls extend from the substrate to a point between the substrate and the trailing edge, allowing the stitched magnetic pole to extend partially over the sides of the write pole.
摘要:
A method for manufacturing a magnetic write head having a write pole with a flared step feature that defines a secondary flare point. The method involves depositing a magnetic write pole material on a substrate and then depositing a magnetic material over the write pole material followed by a non-magnetic material. A first mask is formed having a front edge to define the location of the secondary flare point, and one or more material removal processes are used to remove portions of the magnetic layer and non-magnetic layer that are not protected by this first mask. The first mask is replaced by a second mask that is configured to define a write pole, and an ion milling is performed to define the write pole. Shadowing from the magnetic layer and non-magnetic layer form a flared secondary flare point.
摘要:
A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method includes forming a write pole, and then depositing a refill layer. A mask structure can be formed over the writ pole and refill layer, the mask structure being configured to define a stitched pole. An ion milling or reactive ion milling can then be performed to remove portions of the refill layer that are not protected by the mask structure. Then a magnetic material can be deposited to form a stitched write pole that defines a secondary flare point. The stitched pole can also be self aligned with an electrical lapping guide in order to accurately locate the front edge of the secondary flare point relative to the air bearing surface of the write head.
摘要:
A method for manufacturing a magnetic write head having a write pole with a flared step feature that defines a secondary flare point. The method involves depositing a magnetic write pole material on a substrate and then depositing a magnetic material over the write pole material followed by a non-magnetic material. A first mask is formed having a front edge to define the location of the secondary flare point, and one or more material removal processes are used to remove portions of the magnetic layer and non-magnetic layer that are not protected by this first mask. The first mask is replaced by a second mask that is configured to define a write pole, and an ion milling is performed to define the write pole. Shadowing from the magnetic layer and non-magnetic layer form a flared secondary flare point.
摘要:
A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method includes forming a write pole, and then depositing a refill layer. A mask structure can be formed over the writ pole and refill layer, the mask structure being configured to define a stitched pole. An ion milling or reactive ion milling can then be performed to remove portions of the refill layer that are not protected by the mask structure. Then a magnetic material can be deposited to form a stitched write pole that defines a secondary flare point. The stitched pole can also be self aligned with an electrical lapping guide in order to accurately locate the front edge of the secondary flare point relative to the air bearing surface of the write head.
摘要:
A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method includes forming a write pole, and then depositing a refill layer. A mask structure can be formed over the writ pole and refill layer, the mask structure being configured to define a stitched pole. An ion milling or reactive ion milling can then be performed to remove portions of the refill layer that are not protected by the mask structure. Then a magnetic material can be deposited to form a stitched write pole that defines a secondary flare point. The stitched pole can also be self aligned with an electrical lapping guide in order to accurately locate the front edge of the secondary flare point relative to the air bearing surface of the write head.
摘要:
A magnetic write head having a metal, non-magnetic write gap that extends only partially to the magnetic back gap, the remainder of the distance between the pole tip and the back gap being a magnetic material. The elimination of the seed layer reduces the amount of milling required to perform the desired notching needed to form a self aligned pedestal on the first pole and voids electrolytic corrosion of the back gap during plating.
摘要:
In one embodiment and method of the present invention, a coil of a write head is created by forming a P1 pedestal layer and a back gap layer and further forming a coil pattern consistent with the coil to be formed and insulator spacers dispersed in the coil pattern, using a non-damascene process, thereafter the coil is formed by plating using a damascene process.
摘要:
In one embodiment and method of the present invention, a coil of a write head is created by forming a P1 pedestal layer and a back gap layer and further forming a coil pattern consistent with the coil to be formed and insulator spacers dispersed in the coil pattern, using a non-damascene process, thereafter the coil is formed by plating using a damascene process.