摘要:
A portable defibrillator (10) with a common therapy/data port (12). A set of electrodes (34) is connected to the therapy/data port to connect the defibrillator to a patient. If connected to a patient, the defibrillator operates in a normal mode of operation where it analyzes a patient's electrocardiogram (ECG), and, if required, applies defibrillation therapy through the port to the patient. A communication cable (42) is connected to the therapy/data port to connect the defibrillator to an auxiliary component (44). If connected to an auxiliary component, the defibrillator operates in a data communication mode of operation where data may be transmitted to and received from the auxiliary component through the therapy/data port. A test cable is connected to the therapy/data port to connect the defibrillator to a test load. If connected to a test load, the defibrillator operates in a user test mode of operation to allow a user to test the operation of the defibrillator. Preferably, the portable defibrillator automatically determines whether it is connected to a patient, an auxiliary component, or a test load.
摘要:
A high energy transfer relay includes a housing, a solenoid, a pivot arm, a stationary contact, a switching contact and a leaf spring. The switching contact is mounted on the leaf spring. The armature of the solenoid is coupled to the pivot arm such that when the solenoid is energized, the pivot arm moves in the direction of the stationary contact. Movement is against the force of the leaf spring which is positioned to bias the pivot arm away from the stationary contact against a stop. The leaf spring also pre-loads the pivot point. In addition, the resilience of the leaf spring cushions the impact of the switching contact on the stationary contact to help prevent contact bounce. The outer end of the pivot arm includes a flat that coacts with a flat wall to form an air cushion. The air cushion also assists in preventing contact bounce by absorbing the momentum of the pivot arm after the contacts mate. Additionally, the moment of inertia of the pivot arm and associated elements located on the switching contact side of the pivot point is counterbalanced by the moment of inertia of the armature and the part of the pivot arm on the solenoid side of the pivot point. Balancing the moments of inertia ensures that an acceleration force applied to the solenoid side of the pivot point will be counterbalanced by an equal and opposite force on the switching contact side of the pivot point.
摘要:
In an external cardiac defibrillator (8), a method and system for determining when a relay (22) has failed in a conductive state. The defibrillator (8) includes a charge circuit (14) that charges an energy storage capacitor (C) to a predetermined voltage. The relay (22) is closed to direct a defibrillation pulse from the energy storage capacitor to a patient (25) needing ventricular therapy. The relay (22) is then opened following application of the defibrillation pulse. A monitor circuit (18) monitors the voltage on the energy storage capacitor. If the measured voltage across the energy storage capacitor (C) is less than or equal to a threshold value after a predetermined delay, the relay (22) has failed. If the measured voltage exceeds the threshold value, the relay (22) is operating correctly.
摘要:
A sensor for detecting the firing of a spark plug while maintaining electrical isolation of electronic equipment is disclosed. In the preferred embodiment, a conductive element is attached to one electrical lead of a neon bulb. A wrap secures one end of an optical fiber to the neon bulb for collecting the light from the neon bulb. The optical fiber carries the light from the neon bulb to a data logging device. During use, the conductive element is secured to an insulated spark plug wire and, when the spark plug fires, a voltage between the leads of the neon bulb is induced, causing the neon bulb to produce a pulse of light. The light pulse from the neon bulb is carried by the optical fiber and monitored by the data logging device. By providing an optical fiber to link the data logging device to the neon bulb, electrical isolation is accomplished.
摘要:
The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
摘要:
The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
摘要:
A method and apparatus for controlling the common mode impedance misbalance of an isolated single-ended circuit for all common mode paths, thereby allowing the balancing of the common mode impedances which reduces common mode effects while maintaining the advantages of the single-ended amplifier including circuit simplicity and the reference input connected to circuit ground. In one embodiment, two solid shields enclose the circuit as completely as possible with the inner shield connected to circuit ground which is also the reference for all other inputs to the circuit. A discrete capacitor is connected between the outer shield and each of the non-reference inputs. When the shield is complete, i.e., solid, almost solid with minimal holes or a fine mesh, the value of the discrete capacitor is selected to match the parasitic capacitance formed between the outer shield and the inner shield. In another embodiment, the shield may be incomplete, i.e., a grid, coarse mesh or a solid shield only enclosing a portion of the circuit; this shield is connected to the non-reference input of the circuit. In this case, the exposures of the incomplete outer shield and the electronic circuit ground plane (or inner shield) to an external noise source are matched to balance the effect of their parasitic capacitances. Also, in the case of an incomplete shield, a discrete capacitor may be connected between the outer shield and the non-reference input of the circuit to enable balancing the impedances to common mode currents.
摘要:
A portable, interactive medical electronic device exemplified by a defibrillator. The device obtains information about a patient's condition, such as ECG and transthoracic impedance data, directly from the patient, and information pertinent to the treatment of the patient indirectly through an operator of the device, and produces a medically appropriate action such as a defibrillation shock in response. Indirect information is obtained through information processing means that includes means for prompting the operator of the device and means for receiving the operator's responses thereto. Prompts may include both questions and instructions, and in one embodiment the information processing means obtains the assent of the operator before causing the defibrillation shock. Indirect information may include information as to whether the patient is conscious, and as to whether or not cardiopulmonary resuscitation has been performed. The ECG and transthoracic impedance data may be collected through a common pair of electrodes. In one embodiment the device produces an indication that the ECG data is invalid if the transthoracic impedance data indicates excessive motion on the part of the patient. When a defibrillation shock is determined to be medically appropriate, a control signal is produced that causes the charging of an energy storage means and the subsequent discharging of such energy storage means through the patient without further operator intervention. The device also includes a tape recorder for allowing later analysis of the use of the device, and means for holding the tape recorder drive means in a disengaged position until the device is opened for use. The device also includes testing means for enabling a person to test the condition of the device without opening the case in which it is enclosed, means for producing and recording a distinctive sound when and if a defibrillation pulse is delivered, and means for allowing the electrodes to be quickly disconnected so that emergency personnel can conveniently use the electrodes with their own equipment.
摘要:
A portable, interactive medical electronic device exemplified by a defibrillator. The device obtains information about a patient's condition, such as ECG and transthoracic impedance data, directly from the patient, and information pertinent to the treatment of the patient indirectly through an operator of the device, and produces a medically appropriate action such as a defibrillation shock in response. Indirect information is obtained through information processing means that includes means for prompting the operator of the device and means for receiving the operator's responses thereto. Prompts may include both questions and instructions, and in one embodiment the information processing means obtains the assent of the operator before causing the defibrillation shock. Indirect information may include information as to whether the patient is conscious, and as to whether or not cardiopulmonary resuscitiation has been performed. The ECG and transthroacic impedance data may be collected through a common pair of electrodes. In one embodiment the device produces an indication that the ECG data is invalid if the transthoracic impedance data indicates excessive motion on the part of the patient. When a difibrillation shock is determined to be medically appropriate, a control signal is produced that causes the charging of an energy storage means and the subsequent discharging of such energy storage means through the patient without further operator intervention. The device also includes a tape recorder for allowing later analysis of the use of the device, and means for holding the tape recorder drive means in a disengaged position until the device is opened for use. The device also includes testing means for enabling a person to test the condition of the device without opening the case in which it is enclosed, means for producing and recording a distinctive sound when and if a defibrillation pulse is delivered, and means for allowing the electrodes to be quickly disconnected so that emergency personnel can conveniently use the electrodes with their own equipment.