Abstract:
A technique for operating a network node in a heterogeneously deployed network comprising network nodes of different nominal transmit powers and at least partially overlapping coverage areas is described. A method implementation of this technique comprises a step of operating the network node in a base mode in which the network node is configured to transmit terminal-specific demodulation reference signals for a first set of terminal devices. The method comprises the further step of selectively activating or deactivating operation of the network node in a Single Frequency Network (SFN) mode in which the network node is configured to transmit, for a second set of terminal devices, the same cell-specific reference nodes as another network node of the heterogeneously deployed network that has a larger nominal transmit power.
Abstract:
The present invention relates to a group (G1, G2) of at least two transceiver units (1, 2; 3, 4) in at least one wireless communication system. The transceiver units (1, 2; 3, 4) in the group (G1, G2) are arranged for wireless communication with at least one other transceiver unit. The transceiver units (1, 2; 3, 4) in the group (G1, G2) are arranged to transmit signals with polarizations that are essentially parallel to each other when received by at least one transceiver unit for which the transmitted signals (5, 6) constitutes interference.The present invention also relates to a method, a node and a transceiver unit.
Abstract:
The present invention relates to methods and apparatus for providing a more flexible configuration of sounding reference signal, SRS, transmission. This is achieved by dynamically triggering a mobile terminal to transmit SRS. Thus, embodiments of the invention include a method implemented by a base station in a communications network that semi-statically configures some uplink symbols for periodic SRS transmission and other uplink symbols for aperiodic SRS transmission. The method includes dynamically determining whether an uplink symbol that has been semi-statically configured for aperiodic SRS transmission is to be used by a given mobile terminal at a given time for SRS transmission. The method then further includes signaling a terminal-specific instruction that indicates said determination to the given mobile terminal.
Abstract:
The prevent invention provides a method for performing channel estimation and detection in a Multiple-Input-Multiple-Output (MIMO) system, including: generating a demodulation reference signal, DM-RS, pattern for an extended cyclic prefix (CP); and estimating and detecting channel performance based on the generated DM-RS signal pattern. The DM-RS pattern supports from rank 1 to rank 8 patterns for 8 layer transmission. A transmitter, a receiver and a system thereof are also provided. The solution of the present invention improves channel estimation accuracy, saves channel estimation implementation and implementation complexity at terminals.
Abstract:
The present invention relates to methods and arrangements for providing a more flexible configuration of SRS transmission. This is achieved by dynamically triggering a mobile terminal to transmit SRS. Thus, embodiments of the invention allow dynamically trigged SRS in any uplink subframe, even without necessarily reserving resources semi-statically on cell level. This is done by signaling to the terminal whether the mobile terminal should leave the predefined uplink symbol empty for sounding reference signals or use it for data transmission. In case a terminal leaves the last symbol empty for sounding reference signals, there are two possibilities, either the UE shall transmit one or several reference signals from one or several antennas, or the terminal shall leave the last symbol blank since another terminal may be using the resource for sounding. Accordingly, in a specific embodiment, there are at least three different messages that can be conveyed to the terminal: use the predefined uplink symbol for data, leave it blank or use it for sounding reference signals.
Abstract:
In a heterogeneous cell deployment a mobile terminal may need to receive control data transmissions from a macro node at the same time as a pico node is transmitting user data for the mobile terminal, using the same frequency or set of frequencies. This can result in a problematic interference situation. According to several embodiments of the present invention, at least one of two general approaches is used to mitigate the interference situation described above. In a first approach, the pico node's transmission power is reduced in some time intervals, thereby reducing the interference to a level where reception from the macro node is possible. In a second approach, which may be combined with the first approach in some cases, the data transmitted from the macro node is provided by the pico node, either alone or in combination with the macro node.
Abstract:
Method and apparatus for conveying feedback reports from a data receiving party (300) for data received from a data sending party (302) in a wireless connection. A plurality of feedback resources (304) assigned to different feedback information codes are allocated to the data receiving party for transmitting feedback reports. After checking whether the data was received correctly or not, the data receiving party selects a feedback resource (FR2) with a feedback information code that corresponds to one or more feedback reports on the received data. The data receiving party then sends feedback information on the selected feedback resource to the data sending party, thereby conveying the corresponding feedback information code. In this way, multiple feedback reports can be conveyed in a single feedback resource to the data sending party while still retaining single carrier properties.
Abstract:
A first base station (14) in a wireless communication system (10) operating according to a synchronised time division scheme detects interference of uplink communication, determines the delay of the interference in relation to an own communication structure (CS1), detects aerial interface identifying data of the source of interference identifying a further base station and sends an indication of the further base station interfering uplink communication to the interference handling node (22). The indication is accompanied by identification data comprising aerial interface identifying data of the further base station and distance data determining the distance (D1) between the first and the further base station. The interference handling node (37) receives the indication with accompanying identification data, investigates the identification data in order to determine the identity of a candidate for the further base station and orders the candidate base station to perform an interference limitation activity.
Abstract:
The invention discloses a method (800) for use in a cellular wireless system (100) with a base station (120), a cell (110) in the system and a first user terminal (130) which can be scheduled for receiving traffic from the base station during a down link period, and for transmitting traffic to the base station during an up link period. There is a first guard period (TUD) between the up link period and the down link period, and a second guard period (TDU) between the down link period and the up link period. The method (800) comprises measuring the interference level in the cell for part of the time between two consecutive down link periods, and varying at least one of the following in accordance with the measured interference level: the duration of the first or second guard period, the duration of the up link period, or the traffic sent in the up link period.
Abstract:
A device system, computer medium and method for calibrating at least one impairment of a signal transmitted from a transmitting unit to a receiving unit, the method including receiving at the receiving unit at least two signals transmitted from the transmitting unit, estimating at the receiving unit, based on the received at least two signals, at least one parameter associated with transmit chain links between the transmitting unit and corresponding antennas of the transmitting unit, collecting the at least one parameter in a measurement report at the receiving unit, and transmitting the measurement report from the receiving unit for correcting the at least one impairment based on the at least one parameter.