摘要:
Circuitry for facilitating the use of the memory elements in the look-up tables (“LUTs”) of a field programmable gate array (“FPGA”) as user-accessible, distributed RAM. For example, a register associated with a LUT and that is not needed in the read data path in user RAM mode can be used to register data for writing in user RAM mode. As another example, an otherwise unneeded register associated with a LUT can be used to provide a synchronous read address signal for user RAM mode. Several other features are shown for similarly facilitating user RAM mode with minimal (if any) additional circuitry being required in the FPGA.
摘要:
Circuitry for facilitating the use of the memory elements in the look-up tables (“LUTs”) of a field programmable gate array (“FPGA”) as user-accessible, distributed RAM. For example, a register associated with a LUT and that is not needed in the read data path in user RAM mode can be used to register data for writing in user RAM mode. As another example, an otherwise unneeded register associated with a LUT can be used to provide a synchronous read address signal for user RAM mode. Several other features are shown for similarly facilitating user RAM mode with minimal (if any) additional circuitry being required in the FPGA.
摘要:
A programmable logic device (PLD) includes first and second circuits. The first and second circuits are part of a user's design to be implemented using the PLD's resources. The first circuit is powered by a first supply voltage. The second circuit is powered by a second supply voltage. At least one of the first and second supply voltages is determined by a PLD computer-aided design (CAD) flow used to implement the user's design in the PLD.
摘要:
In accordance with one aspect of the invention, a hole is formed within an LE array of a PLD by interrupting the LE array base signal routing architecture such that a hole is left for IP function block to be incorporated. An interface region is provided for interfacing the remaining LE array base signal routing architecture to the IP function block.
摘要:
A programmable logic device (PLD) includes first and second circuits. The first and second circuits are part of a user's design to be implemented using the PLD's resources. The first circuit is powered by a first supply voltage. The second circuit is powered by a second supply voltage. At least one of the first and second supply voltages is determined by a PLD computer-aided design (CAD) flow used to implement the user's design in the PLD.
摘要:
A programmable logic device (PLD) includes first and second circuits. The first and second circuits are part of a user's design to be implemented using the PLD's resources. The first circuit is powered by a first supply voltage. The second circuit is powered by a second supply voltage. At least one of the first and second supply voltages is determined by a PLD computer-aided design (CAD) flow used to implement the user's design in the PLD.
摘要:
In one aspect, flexible routing resources provided are comprising an arrangement of staggered line segments on a periphery of an electronic device. In another aspect, I/O bus lines a re coupled to receive signals from and to provide signals to other bus lines, core routing, and I/O circuitry, thus facilitating the use of the I/O bus for a variety of routes that may include I/O-to-core, core-to-I/O and core-to-core routes. In another aspect, a length of I/O bus lines is optimized for speed over long signal routes with high fanout. In another aspect, the loading effects of high fanout are minimized by using a plurality of tapping buffers to couple lines to both core routing and to I/O circuitry. In another aspect, a spiraling technique is provided that allows a continuous bus having line segments of consistent length whether or not the number of I/O blocks is an integral multiple of the selected logical length for line segments.
摘要:
Circuitry for facilitating the use of the memory elements in the look-up tables (“LUTs”) of a field programmable gate array (“FPGA”) as user-accessible, distributed RAM. For example, a register associated with a LUT and that is not needed in the read data path in user RAM mode can be used to register data for writing in user RAM mode. As another example, an otherwise unneeded register associated with a LUT can be used to provide a synchronous read address signal for user RAM mode. Several other features are shown for similarly facilitating user RAM mode with minimal (if any) additional circuitry being required in the FPGA.
摘要:
Distributed random access memory in a programmable logic device uses configuration RAM bits as bits of the distributed RAM. A single write path is used to provide both configuration data and user write data. Selection circuitry, such as a multiplexer, is used to determine whether the single write path carries configuration data or user write data. In another aspect of the invention, the configuration RAM bits are used as to construct a shift register by adding pass transistors to chain the configuration RAM bits together, and clocking alternate pass transistors with two clocks 180° out of phase with one another.
摘要:
An embodiment of this invention pertains to a versatile and flexible logic element and logic array block (“LAB”). Each logic element includes a programmable combinational logic function block such as a lookup table (“LUT”) and a flip-flop. Within the logic element, multiplexers are provided to allow the flip-flop and the LUT to be programmably connected such that either the output of the LUT may be connected to the input of the flip-flop or the output of the flip-flop may be connected to the input of the LUT. An additional multiplexer allows the output of the flip-flop in one logic element to be connected to the input of a flip-flop in a different logic element within the same LAB. Output multiplexers selects between the output of the LUT and the output of the flip-flop to generate signals that drive routing lines within the LAB and to routing lines external to the LAB. These output multiplexers are constructed such that the combinational output (output from the LUT) is faster than the output from the flip-flop. A collection of routing lines and multiplexers within the LAB are used to provide inputs to the LUTs. Each of the input multiplexers for each logic element is connected to a subset of the routing lines within the LAB using a specific pattern of connectivity of multiplexers to associated wires that maximizes the efficiency of use of the routing wires. Control signals for the set of logic elements within the LAB are generated using a secondary signal generation unit that minimizes contention for shared signals. One of the control signals is an “add-or-subtract control signal” that allows all of the LEs in a LAB to perform either addition or subtraction under the control of a logic signal. In a PLD supporting redundancy, the carry chain for the LABs is arranged in the same direction that redundancy shifts to remap defective LABs and a multiplexer on the carry input of a LAB is used to select the appropriate carry output from another LAB depending on whether redundancy is engaged.