摘要:
An improved and novel semiconductor device including an amorphous carbon layer for improved adhesion of photoresist and method of fabrication. The device includes a substrate having a surface, a carbon layer formed on the surface of the substrate, and a resist layer formed on a surface of the carbon layer. The device is formed by providing a substrate having a surface, depositing a carbon layer on the surface of the substrate using plasma enhanced chemical vapor deposition (PECVD) or sputtering, and forming a resist layer on a surface of the carbon layer.
摘要:
An improved and novel semiconductor device including an amorphous carbon layer for improved adhesion of photoresist and method of fabrication. The device includes a substrate having a surface, a carbon layer, formed on the surface of the substrate, and a resist layer formed on a surface of the carbon layer. The device is formed by providing a substrate having a surface, depositing a carbon layer on the surface of the substrate using plasma enhanced chemical vapor deposition (PECVD) or sputtering, and forming a resist layer on a surface of the carbon layer.
摘要:
A method of contact printing on a device using a partially transparent mask (18) having first and second surfaces, comprises the steps of applying a layer of low surface energy polymeric material (22) to the first surface of the mask; placing the first surface (24) of the mask contiguous to the device (10), the layer of low surface energy polymeric material being substantially in contact with the device; and applying radiation (32) to the second surface of the mask for affecting a pattern in the device.
摘要:
A method of contact printing on a device using a partially transparent mask (18) having first and second surfaces, comprises the steps of applying a layer of low surface energy polymeric material (22) to the first surface of the mask; placing the first surface (24) of the mask contiguous to the device (10), the layer of low surface energy polymeric material being substantially in contact with the device; and applying radiation (32) to the second surface of the mask for affecting a pattern in the device.
摘要:
This invention relates to semiconductor devices, microelectronic devices, micro electro mechanical devices, microfluidic devices, and more particularly to an improved lithographic template including a repaired defect, a method of fabricating the improved lithographic template, a method for repairing defects present in the template, and a method for making semiconductor devices with the improved lithographic template. The lithographic template (10) is formed having a relief structure (26) and a repaired gap defect (36) within the relief structure (26). The template (10) is used in the fabrication of a semiconductor device (40) for affecting a pattern in device (40) by positioning the template (10) in close proximity to semiconductor device (40) having a radiation sensitive material formed thereon and applying a pressure to cause the radiation sensitive material to flow into the relief structure present on the template. Radiation is then applied through the template so as to further cure portions of the radiation sensitive material and further define the pattern in the radiation sensitive material. The template (10) is then removed to complete fabrication of semiconductor device (40).
摘要:
This invention relates to a lithographic template, a method of forming the lithographic template and a method for forming devices with the lithographic template. The lithographic template (10, 110, 210) is formed having a substrate (12, 112, 212) and a charge dissipation layer (20, 120, 220), and a patterned imageable relief layer, (16, 116, 216) formed on a surface (14, 114, 214) of the substrate (10, 110, 210) using radiation. The template (10, 110, 210) is used in the fabrication of a semiconductor device (344) for affecting a pattern in the device (344) by positioning (338) the template (10, 11, 210) in close proximity to semiconductor device (344) having a radiation sensitive material (334) formed thereon and applying a pressure (340) to cause the radiation sensitive material to flow into the relief image present on the template (10, 110, 210). Radiation (342) is then applied through the template (10, 110, 210) to cure portions of the radiation sensitive material and define the pattern in the radiation sensitive material. The template (10, 110, 210) is then removed to complete fabrication of semiconductor device (344).
摘要:
This invention relates to semiconductor devices, microelectronic devices, microelectromechanical devices, microfluidic devices, photonic devices, and more particularly to a multi-tiered lithographic template, a method of forming the multi-tiered lithographic template and a method for forming devices with the multi-tiered lithographic template. The multi-tiered lithographic template (10/10′) is formed having a first relief structure and a second relief structure, thereby defining a multi-tiered relief image. The template is used in the fabrication of a semiconductor device (40) for affecting a pattern in device (40) by positioning the template in close proximity to semiconductor device (40) having a radiation sensitive material formed thereon and applying a pressure to cause the radiation sensitive material to flow into the multi-tiered relief image present on the template. Radiation is then applied through the multi-tiered template so as to further cure portions of the radiation sensitive material and further define the pattern in the radiation sensitive material. The multi-tiered template is then removed to complete fabrication of semiconductor device (40).
摘要:
An alignment mark (51) is formed on the surface (64) of a silicon carbide substrate (50). The alignment mark (51) is used to reflect a light signal (72) to determine the proper position for the silicon carbide substrate (50). The materials that are used to form the alignment mark (51) can be used to form an alignment mark on any transparent or semi-transparent substrate and will maintain physical integrity through very high temperature processing steps.
摘要:
An alignment mark (51) is formed on the surface (64) of a silicon carbide substrate (50). The alignment mark (51) is used to reflect a light signal (72) to determine the proper position for the silicon carbide substrate (50). The materials that are used to form the alignment mark (51) can be used to form an alignment mark on any transparent or semi-transparent substrate and will maintain physical integrity through very high temperature processing steps.
摘要:
A novel device, such as a semiconductor device, a microfluidic device, a surface acoustic wave device an imprint template, or the like, including an amorphous carbon layer for improved adhesion of organic layers and method of fabrication. The device includes a substrate having a surface, an amorphous carbon layer, formed overlying the surface of the substrate, and a low surface energy material layer overlying the surface of the substrate. The device is formed by providing a substrate having a surface, depositing a low surface energy material layer and an amorphous carbon layer overlying the surface of the substrate adjacent the low surface energy material layer using plasma enhanced chemical vapor deposition (PECVD) or sputtering.