Abstract:
A hydraulic energy recovery device for a hydraulic system is disclosed. The hydraulic energy recovery device has a first impeller configured to receive a flow of pressurized liquid, and a second impeller configured to pressurize a flow of liquid. The hydraulic energy recovery device also has a common shaft connecting the first and second impellers.
Abstract:
A sensor is positioned to sense the magnetic field strength of a magnet associated with a rotating body. The sensor produces a signal having a sinusoidal output as the magnet rotates with the rotating body. A controller takes a derivative of the output and calculates the rotational velocity of the rotational body as a function of the derivative.
Abstract:
The present invention provides an apparatus and a method for determining the position of a first element relative to a second element. The apparatus includes a magnet being attached to the first element. First and second sensing devices are adapted to detect a magnetic flux density produced by the magnet and responsively generating first and second signals. The apparatus also includes a controller for receiving the first and second signals and responsively determining the position of the first element relative to the second. The present invention enables continuous calibration during the normal operation of the machine.
Abstract:
A system for controlling slip of vehicle drive members is disclosed. The system includes a power train including a plurality of drive members and a hydraulic transmission configured to supply torque to at least one of the drive members. A magnitude of the torque is related to fluid flow in the hydraulic transmission. The system further includes a controller configured to control the fluid flow in the hydraulic transmission. The controller is configured to receive a signal indicative of a steering command and a signal indicative of a parameter related to pressure in the hydraulic transmission. The controller is further configured to control slip of the at least one drive member based on the signal indicative of a steering command and the signal indicative of a parameter related to pressure.
Abstract:
A system is provided for controlling the speed of a vehicle having a power plant and a transmission. A control unit is configured to receive a signal indicative of the speed of the vehicle. The control unit is further configured to determine a desired output speed of the power plant based on the signal indicative of the speed of the vehicle, a signal indicative of the gear ratio of the transmission, and a desired vehicle speed associated with the gear ratio. The control unit is also configured to send a signal to the power plant, such that power plant operates at an output speed that substantially maintains the desired vehicle speed in a manner substantially independent of a magnitude of load on the power plant.
Abstract:
In the operation of work machines it has been a problem to control the work machine's velocity aspects such as velocity, acceleration, deceleration and jerk because of the plurality of operator interfaces required for such control. The present invention provides an operator interface system for a work machine in which a first pedal is displaceable from a neutral position, and a sensor is operatively coupled with the first pedal and is operable to output a displacement signal corresponding to a location of the first pedal. An electronic controller receives the displacement signal and provides a predetermined control to a velocity aspect of the work machine in response to the displacement signal.
Abstract:
A hydraulic energy recovery device for a hydraulic system is disclosed. The hydraulic energy recovery device has a first impeller configured to receive a flow of pressurized liquid, and a second impeller configured to pressurize a flow of liquid. The hydraulic energy recovery device also has a common shaft connecting the first and second impellers.
Abstract:
A system is provided for controlling the speed of a vehicle having a power plant and a transmission. A control unit is configured to receive a signal indicative of the speed of the vehicle. The control unit is further configured to determine a desired output speed of the power plant based on the signal indicative of the speed of the vehicle, a signal indicative of the gear ratio of the transmission, and a desired vehicle speed associated with the gear ratio. The control unit is also configured to send a signal to the power plant, such that power plant operates at an output speed that substantially maintains the desired vehicle speed in a manner substantially independent of a magnitude of load on the power plant.
Abstract:
A tyre apparatus is provided, the apparatus including a tyre body for attachment to a wheel rim to define a first inflatable volume. An inner chamber defines a second inflatable volume which is located within the first inflatable volume of the tyre body. A first fluid communication path is provided between the first and second inflatable volumes and a second fluid communication path is provided between the first inflatable volume and the atmosphere. A first valve opens and closes the first fluid communication path, and a second valve opens and closes the second fluid communication path. The tensile strength and pressure-containing capacity of the material structure of the second inflatable volume is greater than that of the tyre first inflatable volume. A first fluid pressure within the first inflatable volume of the tyre body is optimisable by opening the first valve to allow pressure transfer from the second inflatable volume into the tyre body, and/or opening the second valve to allow pressure to vent from the tyre body to atmosphere. A vehicle wheel and active tyre pressure control system incorporating the tyre apparatus are also provided.
Abstract:
A work machine with steering control has a first traction device and a first ratio control device operatively connected to the first traction device. The work machine also has a second traction device and a second ratio control device operatively connected to the second traction device. The work machine further has a power source configured to drive the first and second ratio control devices. The work machine has a sensor configured to generate a signal indicative of work machine maneuvering. The work machine further has a controller in communication with the power source. The controller is operable to control an output of the power source in response to the signal indicative work machine maneuvering.