Abstract:
In one aspect of the present invention, a method for determining the work cycle of an earth moving machine is disclosed. The machine has a transmission, a work implement, and a lift cylinder and a tilt cylinder connected to the work implement. The method includes the steps of determining a lift cylinder head end pressure, a displacement of the lift cylinder, a displacement of the tilt cylinder, and a direction of travel of the machine. The method further includes determining the work cycle of the machine in response to the displacement of the tilt and lift cylinders, and the lift cylinder head end pressure.
Abstract:
A collapsible fluid storage tank is disclosed. The fluid storage tank may include a bladder configured to store fluids, occupy a variable space, and collapse as the stored fluid is depleted. The fluid storage tank may also include at least one component configured to connect the bladder to a machine.
Abstract:
The present invention is adapted to provide a method for determining the torque of a driveshaft. In the preferred embodiment a drivetrain includes a front and a rear drivetrain. The drivetrain is also connected to an engine, torque converter, front and rear axle and a transmission. In one embodiment, the ability to determine the transmission output torque for an earth moving machine includes determining an output torque of the converter and a gear reduction of the engine, and then responsively determining the front and rear driveshaft torque in response to the converter output torque and the engine gear reduction. The driveshaft torque calculations may be performed while the earth moving machine is operating. The resulting front and rear driveshaft torque calculations may be used to determine an axle damage index, or axle life calculations.
Abstract:
An apparatus and method for controlling the torque on the power train of a machine is disclosed. The power train includes an engine and a torque converter. The machine includes a work implement that is moveable in response to the actuation of a plurality of hydraulic cylinders. An electronic controller determines an optimal engine speed based on the actual engine speed, torque converter output speed, and the fluid pressure associated with the hydraulic cylinders. The optimal engine speed is used to govern the speed of the engine to control the power train torque.
Abstract:
A system is provided for controlling the speed of a vehicle having a power plant and a transmission. A control unit is configured to receive a signal indicative of the speed of the vehicle. The control unit is further configured to determine a desired output speed of the power plant based on the signal indicative of the speed of the vehicle, a signal indicative of the gear ratio of the transmission, and a desired vehicle speed associated with the gear ratio. The control unit is also configured to send a signal to the power plant, such that power plant operates at an output speed that substantially maintains the desired vehicle speed in a manner substantially independent of a magnitude of load on the power plant.
Abstract:
A parking brake switch for a vehicle including a switch having a contacting surface, the switch being positioned between an actuated state and a deactuated state, a first contact connected to a brake valve associated with an electro-hydraulic braking system, a second contact connected to a pair of electronic control modules, and a third contact connected to the pair of electronic control modules and a coil, the contacting surface being adapted to engage all of the contacts when the switch is in the actuated state.
Abstract:
An electrohydraulic control device for a drive train of a machine including an engine, a transmission, a torque converter, and an impeller clutch is disclosed. A manually operated impeller clutch pedal produces an impeller clutch pedal signal in response to the position of the impeller clutch pedal. An impeller clutch electrohydraulic valve produces fluid flow to the impeller clutch to controllably engage and disengage the impeller clutch. An impeller clutch pressure curve that is responsive to the impeller clutch pedal position is stored in memory. A rotary position switch selects a desired rimpull setting indicative of a desired reduction in rimpull and produces a desired rimpull signal. An electronic controller receives the desired rimpull signal and reconfigures the impeller clutch pressure curve. Thereafter, the electronic controller receives the impeller clutch pedal signal and controllably actuates the electrohydraulic valve to produce a desired impeller clutch pressure defined by the impeller clutch pressure curve.