摘要:
The present disclosure describes methods and systems that combine Raman spectroscopy performed in a manner that utilizes one or more of widefield illumination, simultaneous multipoint Raman spectral acquisition, and spectral unmixing for the purpose of high throughput polymorph screening. Features of this methodology include: (a) high throughput polymorph screening to reduce crystal orientation effects on Raman spectra; (b) in-well multi-polymorph screening using increased statistical sampling; and (c) multipoint spectral sampling to enable spectral unmixing.
摘要:
The present disclosure describes methods and systems that combine Raman spectroscopy performed in a manner that utilizes one or more of widefield illumination, simultaneous multipoint Raman spectral acquisition, and spectral unmixing for the purpose of high throughput polymorph screening. Features of this methodology include: (a) high throughput polymorph screening to reduce crystal orientation effects on Raman spectra; (b) in-well multi-polymorph screening using increased statistical sampling; and (c) multipoint spectral sampling to enable spectral unmixing.
摘要:
A system and method of detecting explosive compounds located on a sample. The sample is irradiated with animal-safe ultra-violet radiation generating a fluorescence data set. A fluorescence database is searched based on the fluorescence data set in order to identify a known fluorescence data set. If the searching of the fluorescence database identifies a known fluorescence data set, an area of interest in the sample is identified based on the known fluorescence data set identified in the fluorescence database searching. The area of interest is irradiated with substantially monochromatic radiation to generate a Raman data set of the area of interest. A Raman database is searched based on the Raman data set in order to identify a known Raman data set. An explosive compound in the area of interest is identified based on the known Raman data set identified by searching the Raman database.
摘要:
The disclosure generally relates to a method and apparatus for automated spectral calibration of a spectroscopy device. In one embodiment, the disclosure relates to a method for simultaneous calibration and spectral imaging of a sample by: simultaneously illuminating the sample and a calibrant with a plurality of illuminating photons; receiving, at the spectrometer, a first plurality of photons collected from the sample and a second plurality of photons collected from the calibrant; forming a calibrant spectrum from the first plurality of collected photons and a sample spectrum from the second plurality of collected photons; comparing the calibrant spectrum with a reference spectrum of the calibrant to determine a wavelength-shift in the calibrant spectrum; applying the wavelength-shift to the sample spectrum to obtain a calibrated sample spectrum.
摘要:
The disclosure relates generally to methods and apparatus for spectral calibration of a spectroscopic system which includes a fiber array spectral translator. One embodiment relates to a method for obtaining a first image of a known substance using a photon detector and a fiber array spectral translator having plural fibers, wherein the first image comprises at least one pixel; providing a second image of the substance wherein the second image comprises at least one pixel; comparing the first image with the second image; and adjusting at least one pixel of the first image based on the comparison of images to thereby obtain an adjusted image.
摘要:
The disclosure relates generally to methods and apparatus for obtaining a super resolution image of a sample using a fiber array spectral translator system. In one embodiment includes collecting photons from a sample at a first end of a fiber array spectral translator; delivering the photons from a second end of the fiber array spectral translator into a multiple detector rows of a photon detector; interpolating between the multiple detector rows to thereby form interpolated rows; and arranging an output of the multiple detector rows and the interpolated rows so as to obtain a super resolution image of the sample.
摘要:
The disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
摘要:
A system and method for standoff detection of explosives and explosive residue. A laser light source illuminates a target area having an unknown sample producing luminescence emitted photons, scattered photons and plasma emitted photons. A first optical system directs light to the target area. A video capture device outputs a dynamic image of the target area. A second optical system collects photons, and directs collected photons to a first two-dimensional array of detection elements and/or to a fiber array spectral translator device which device includes a two-dimensional array of optical fibers drawn into a one-dimensional fiber stack. A spectrograph is coupled to the one-dimensional fiber stack of the fiber array spectral translator device, wherein the entrance slit of the spectrograph is coupled to the one dimensional fiber stack.
摘要:
The disclosure relates generally to methods and apparatus for using a fiber array spectral translator-based (“FAST”) spectroscopic system for improved imaging, spectral analysis, and interactive probing of a sample. In an embodiment, the confocality of a fiber array spectral translator-based spectroscopic system is improved through the use of structured illumination and/or structured collection of photons. User input may be received and acted upon to allow a user to interactively in real time and/or near real time view and analyze specific regions of the sample.
摘要:
Pathogenic microorganisms are detected in a wide field of view and classified by Raman light scattered light from these organisms together with digital pattern recognition of their spectral patterns.