摘要:
An invention is provided for removal rate profile manipulation during a CMP process. An apparatus of the embodiments of the present invention includes an actuator capable of vertical movement perpendicular to a polishing surface of a polishing pad. The actuator is further capable of flexing the polishing pad independently of a pad support device. Also included in the apparatus is an actuator control mechanism that is in communication with the actuator. The actuator control mechanism is capable of controlling an amount of vertical movement of the actuator, allowing the actuator to provide local flexing of the polishing pad to achieve a particular removal rate profile. The actuator can also be capable of horizontal movement parallel to the polishing surface of the polishing pad.
摘要:
A system and method for polishing semiconductor wafers includes a variable partial pad-wafer overlap polisher having a reduced surface area, fixed-abrasive polishing pad and a polisher having a non-abrasive polishing pad for use with an abrasive slurry. The method includes first polishing a wafer with the variable partial pad-wafer overlap polisher and the fixed-abrasive polishing pad and then polishing the wafer in a dispersed-abrasive process until a desired wafer thickness is achieved.
摘要:
A system and method for polishing semiconductor wafers includes a variable partial pad-wafer overlap polisher having a reduced surface area, fixed-abrasive polishing pad and a polisher having a non-abrasive polishing pad for use with an abrasive slurry. The method includes first polishing a wafer with the variable partial pad-wafer overlap polisher and the fixed abrasive polishing pad and then polishing the wafer in a dispersed-abrasive process until a desired wafer thickness is achieved.
摘要:
A chemical mechanical planarization (CMP) system is provided. The system includes a polishing surface and a platen disposed along an underside of the polishing surface. A retaining ring surrounds the platen. The retaining ring includes a lower annular sleeve and an upper annular sleeve moveably disposed over the lower annular sleeve. A method for reducing a consumption of compressed dry air (CDA) during a chemical mechanical planarization (CMP) operation is also described.
摘要:
A retaining ring is provided. The retaining ring includes a lower annular sleeve having a base. The base has an inner sidewall and an outer sidewall extending therefrom. The lower annular sleeve has at least one hole defined therein. An upper annular sleeve is moveably disposed over the lower annular sleeve. The upper annular sleeve has a top, that has at least one hole defined therein. The top has an inner sidewall and an outer sidewall extending therefrom. A method for reducing a consumption of compressed dry air (CDA) during a chemical mechanical planarization (CMP) operation is also described.
摘要:
A chemical mechanical polishing (CMP) system is provided. A carrier has a top surface and a bottom region. The top surface of the carrier is designed to hold and rotate a wafer having a one or more formed layers to be prepared. A preparation head is also included and is designed to be applied to at least a portion of the wafer that is less than an entire portion of the surface of the wafer. Preferably, the preparation head and the carrier are configured to rotate in opposite directions. In addition, the preparation head is further configured to oscillate while linearly moving from one of the direction of a center of the wafer to an edge of the wafer and from the edge of the wafer to the center of the wafer so as to facilitate precision controlled removal of material from the formed layers of the wafer.
摘要:
A dry-in/dry-out system is disclosed for wafer electroless plating. The system includes an upper zone for wafer ingress/egress and drying operations. Proximity heads are provided in the upper zone to perform the drying operations. The system also includes a lower zone for electroless plating operations. The lower zone includes an electroless plating apparatus that implements a wafer submersion by fluid upwelling method. The upper and lower zones of the system are enclosed by a dual-walled chamber, wherein the inner wall is a chemically inert plastic and the outer wall is a structural metal. The system interfaces with a fluid handling system which provides the necessary chemistry supply and control for the system. The system is ambient controlled. Also, the system interfaces with an ambient controlled managed transfer module (MTM).
摘要:
A semiconductor wafer electroless plating apparatus includes a platen and a fluid bowl. The platen has a top surface defined to support a wafer, and an outer surface extending downward from a periphery of the top surface to a lower surface of the platen. The fluid bowl has an inner volume defined by an interior surface so as to receive the platen, and wafer to be supported thereon, within the inner volume. A seal is disposed around the interior surface of the fluid bowl so as to form a liquid tight barrier when engaged between the interior surface of the fluid bowl and the outer surface of the platen. A number of fluid dispense nozzles are positioned to dispense electroplating solution within the fluid bowl above the seal so as to rise up and flow over the platen, thereby flowing over the wafer when present on the platen.
摘要:
A chemical fluid handling system is defined to supply a number of chemicals to a number of fluid inputs of a mixing manifold. The chemical fluid handling system includes a number of fluid recirculation loops for separately pre-conditioning and controlling the supply of each of the number of chemicals. Each of the fluid recirculation loops is defined to degas, heat, and filter a particular one of the number of chemical components. The mixing manifold is defined to mix the number of chemicals to form the electroless plating solution. The mixing manifold includes a fluid output connected to a supply line. The supply line is connected to supply the electroless plating solution to a fluid bowl within an electroless plating chamber.
摘要:
An apparatus for cleaning a semiconductor wafer edge is provided. The apparatus includes a film with an abrasive layer configured to contact the edge surface of a semiconductor substrate coated with a contaminant residue layer. A first reel having the film wound thereon and a second reel for receiving the film fed from the first reel are included. In one embodiment, a third reel configured to force the abrasive layer of the film against the edge surface of the semiconductor substrate so as to create an area of contact between the abrasive layer and the edge surface of the semiconductor substrate; and a pin that protrudes from to the top surface of the third reel. A system and method for cleaning a semiconductor wafer edge are also provided.