摘要:
A Schottky junction silicon nanowire field-effect biosensor/molecule detector with a nanowire thickness of 10 nanometer or less and an aligned source/drain workfunction for increased sensitivity. The nanowire channel is coated with a surface treatment to which a molecule of interest absorbs, which modulates the conductivity of the channel between the Schottky junctions sufficiently to qualitatively and quantitatively measure the presence and amount of the molecule.
摘要:
A Schottky junction silicon nanowire field-effect biosensor/molecule detector with a nanowire thickness of 10 nanometer or less and an aligned source/drain workfunction for increased sensitivity. The nanowire channel is coated with a surface treatment to which a molecule of interest absorbs, which modulates the conductivity of the channel between the Schottky junctions sufficiently to qualitatively and quantitatively measure the presence and amount of the molecule.
摘要:
Techniques for fabricating self-aligned contacts in III-V FET devices are provided. In one aspect, a method for fabricating a self-aligned contact to III-V materials includes the following steps. At least one metal is deposited on a surface of the III-V material. The at least one metal is reacted with an upper portion of the III-V material to form a metal-III-V alloy layer which is the self-aligned contact. An etch is used to remove any unreacted portions of the at least one metal. At least one impurity is implanted into the metal-III-V alloy layer. The at least one impurity implanted into the metal-III-V alloy layer is diffused to an interface between the metal-III-V alloy layer and the III-V material thereunder to reduce a contact resistance of the self-aligned contact.
摘要:
Techniques for fabricating self-aligned contacts in III-V FET devices are provided. In one aspect, a method for fabricating a self-aligned contact to III-V materials includes the following steps. At least one metal is deposited on a surface of the III-V material. The at least one metal is reacted with an upper portion of the III-V material to form a metal-III-V alloy layer which is the self-aligned contact. An etch is used to remove any unreacted portions of the at least one metal. At least one impurity is implanted into the metal-III-V alloy layer. The at least one impurity implanted into the metal-III-V alloy layer is diffused to an interface between the metal-III-V alloy layer and the III-V material thereunder to reduce a contact resistance of the self-aligned contact.
摘要:
A semiconductor-containing heterostructure including, from bottom to top, a III-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a III-V compound semiconductor barrier layer, and an optional, yet preferred, III-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The III-V compound semiconductor buffer layer and the III-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the III-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
摘要:
A semiconductor-containing heterostructure including, from bottom to top, a III-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a III-V compound semiconductor barrier layer, and an optional, yet preferred, III-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The III-V compound semiconductor buffer layer and the III-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the III-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
摘要:
A semiconductor-containing heterostructure including, from bottom to top, a III-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a III-V compound semiconductor barrier layer, and an optional, yet preferred, III-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The III-V compound semiconductor buffer layer and the III-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the III-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
摘要:
Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
摘要:
Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
摘要:
Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.