摘要:
A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.
摘要:
A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO.sub.2 in the presence of O.sub.2. The second stage serves to convert NO.sub.2 to environmentally benign gases that include N2, CO2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO.sub.2 in the presence of O.sub.2 and includes platinum/alumina, e.g., Pt/Al.sub.2 O.sub.3 catalyst. A flow of hydrocarbons (C.sub.x H.sub.y) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO.sub.2 from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO.sub.2 to N2, CO2, and H.sub.2 O, and includes a gamma-alumina .gamma.-Al.sub.2 O.sub.3. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the second catalyst.
摘要翻译:两阶段催化剂包括氧化第一阶段和还原第二阶段。 第一阶段是在O2的存在下将NO转化为NO2。 第二阶段用于将NO2转化为环境良好的气体,包括N2,CO2和H2O。 通过在第一阶段将NO转化为NO2,提高了NOx还原的第二阶段的效率。 例如,内燃机排气通过管连接到第一室。 氧化性第一催化剂在O 2存在下将NO转化为NO2,并且包括铂/氧化铝,例如Pt / Al 2 O 3催化剂。 烃流(CxHy)从管道输入到第二室。 例如,丙烯可以用作烃的来源。 来自第一催化剂的NO 2与第二室中的烃混合。 混合物进行第二还原催化剂,其将NO 2转化为N 2,CO 2和H 2 O,并且包括γ-氧化铝γ-Al 2 O 3。 在通过第二催化剂的同时,烃和NOx同时还原。
摘要:
Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO.sub.x reduction in oxygen-rich vehicle engine exhausts.
摘要:
Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.
摘要:
Reduction of NO.sub.x from diesel engine exhaust by use of plasma-regenerated absorbent beds. This involves a process for the reduction of NO.sub.x and particulates from diesel engines by first absorbing NO.sub.x onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO.sub.x followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO.sub.x absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO.sub.x absorption properties up to temperatures around 400.degree. C. which is in the area of diesel engine exhaust temperatures.
摘要:
A two-stage method for NOx reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NOx gases in an oxygen-rich exhaust and is intended to convert NO to NO2 in the presence of O2 and hydrocarbons. The second stage employs a lean NOx trap to convert such NO2 to environmentally benign gases that include N2, CO2, and H2O. By preconverting NO to NO2 in the first stage with a plasma, the efficiency of the second stage for NOx reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO2 in the presence of O2 and hydrocarbons, such as propene. A flow of such hydrocarbons (CxHy) is input from usually a second pipe into at least a portion of the first chamber. The NO2 from the plasma treatment proceeds to a storage reduction catalyst (lean NOx trap) that converts NO2 to N2, CO2, and H2O, and includes a nitrate-forming catalytic site. The hydrocarbons and NOx are simultaneously reduced while passing through the lean-NOx trap catalyst. The method allows for enhanced NOx reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.
摘要:
A non-catalytic two-stage process for removal of NO.sub.x and particulates from engine exhaust comprises a first stage that plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, and a second stage, which preferably occurs simultaneously with the first stage, that converts NO.sub.2 and carbon soot particles to respective environmentally benign gases that include N.sub.2 and CO.sub.2. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced while carbon soot from trapped particulates is simultaneously converted to CO.sub.2 when reacting with the NO.sub.2 (that converts to N.sub.2). For example, an internal combustion engine exhaust is connected by a pipe to a chamber where carbon-containing particulates are electrostatically trapped or filtered and a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. Volatile hydrocarbons (C.sub.x H.sub.y) from the trapped particulates are oxidized in the plasma and the remaining soot from the particulates reacts with the NO.sub.2 to convert NO.sub.2 to N.sub.2, and the soot to CO.sub.2. The nitrogen exhaust components remain in the gas phase throughout the process, with no accompanying adsorption.
摘要翻译:用于从发动机排气中除去NOx和颗粒物的非催化两阶段方法包括在O 2和烃存在下等离子体将NO转化为NO 2的第一阶段,以及优选与第一阶段同时发生的第二阶段, 将NO 2和碳烟粒转化成包括N 2和CO 2在内的各种环境良好的气体。 通过在第一阶段将NO转化为NO2,与NO2(转化为N2)反应时,NOx还原的第二阶段的效率提高,而来自捕获的颗粒的碳烟被同时转化为CO 2。 例如,将内燃机排气通过管道连接到含有磁体的微粒被静电捕获或过滤的室中,并且在O 2和烃存在下,非热等离子体将NO转化为NO2。 来自捕获的颗粒的挥发性烃(C x H y)在等离子体中被氧化,并且来自颗粒的剩余烟灰与NO 2反应以将NO 2转化为N 2,并将烟灰转化为CO 2。 氮气排放组分在整个过程中保持在气相中,没有伴随的吸附。
摘要:
A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NOx contained in an oxygen-rich engine exhaust to N2 and O2. Preferably, the invention relates to a two-stage method and apparatus for NOx reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NOx gases in an oxygen-rich exhaust and is intended to convert NO to NO2 in the presence of O2 and added hydrocarbons. The second stage employs a lean-NOx catalyst including the basic zeolite at relatively low temperatures to convert such NO2 to environmentally benign gases that include N2, CO2, and H2O.
摘要:
Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NOx to N2 in the presence of a catalyst. Exhaust NOx reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NOx species removed.
摘要:
A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.