摘要:
Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
摘要:
Controllers for providing functions for windows capable of undergoing reversible optical transitions. In some cases, the controllers have multiple features that can sense and adapt to local environmental conditions. The controllers can be integrated with a building management system (BMS) to greatly enhance the BMS's effectiveness at managing local environments in a building. For example, controllers may control one or more functions such as powering a smart window, determining the percent transmittance, size, and/or temperature of a smart window, providing wireless communication between the controller and a separate communication node, etc.
摘要:
Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
摘要:
Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
摘要:
“Smart” controllers for windows having controllable optical transitions are described. Controllers with multiple features can sense and adapt to local environmental conditions. Controllers described herein can be integrated with a building management system (BMS) to greatly enhance the BMS's effectiveness at managing local environments in a building. The controllers may have one, two, three or more functions such as powering a smart window, determining the percent transmittance, size, and/or temperature of a smart window, providing wireless communication between the controller and a separate communication node, etc.
摘要:
A portable controller having a portable power supply for transitioning tint of an optical device such as an electrochromic device. The portable power supply has at least one battery located within a housing and a support structure for supporting the battery. The portable controller has circuitry with logic for controlling power to the optical device. In some cases, the portable power supply may provide a higher than normal drive voltage to the optical device to accelerate transition to the tint state and then may reduce the drive voltage to a normal level.
摘要:
A process for synthesizing and separating secretory IgA from a mixture of IgA monmer and IgA dimer is provided. The process includes covalently binding affinity tagged or epitope tagged recombinant secretory component to the IgA dimer in the mixture and binding the affinity tagged or an epitope tagged secretory IgA to immobilized moieties on the solid phase support resin to which the affinity tag or epitope tag binds and then eluting the affinity tagged or an epitope tagged secretory IgA with release buffer. A process for synthesizing and separating secretory IgM from a mixture of IgM and other plasma proteins is also provided. The process includes covalently binding affinity tagged or an epitope tagged recombinant secretory component to the IgM in the mixture and binding the affinity tagged or an epitope tagged secretory IgM to immobilized moieties on the solid phase support resin and then eluting the peptide tagged secretory IgM with a release buffer.
摘要:
The embodiments herein relate to electrochromic window systems and components thereof. In particular, the disclosed embodiments relate to systems where electrochromic devices are powered and/or controlled using photonic energy. In an exemplary embodiment, a laser is driven by a driver to deliver photonic power and/or control information into an optical fiber. The optical fiber carries the power and control information to a photovoltaic converter and a controller. The photovoltaic converter and controller may be included within an insulated glass unit in some embodiments. The photovoltaic converter converts the light energy into electrical energy used to power a transition in an optical state of an electrochromic layer or layers within the insulated glass unit. The controller may be used to control the power delivered to the electrochromic layer(s), such that a smooth transition occurs. In some embodiments, control information may be transmitted in an upstream manner to communicate information regarding, for example, the state of an electrochromic device (e.g., current level of tinting, fault status, etc.).
摘要:
This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity. Pre-wired spacers improve fabrication efficiency and seal integrity of insulated glass units. Electrical connection systems include those embedded in the secondary seal of the insulated glass unit.
摘要:
This disclosure provides systems, methods, and apparatus for controlling transitions in an optically switchable device. In one aspect, a controller for a tintable window may include a processor, an input for receiving output signals from sensors, and instructions for causing the processor to determine a level of tint of the tintable window, and an output for controlling the level of tint in the tintable window. The instructions may include a relationship between the received output signals and the level of tint, with the relationship employing output signals from an exterior photosensor, an interior photosensor, an occupancy sensor, an exterior temperature sensor, and a transmissivity sensor. In some instances, the controller may receive output signals over a network and/or be interfaced with a network, and in some instances, the controller may be a standalone controller that is not interfaced with a network.