摘要:
A filtering circuit with BAW type acoustic resonators having at least a first quadripole and a second quadripole connected in cascade, each quadripole having a branch series with a first acoustic resonator of type BAW and a branch parallel with each branch having an acoustic resonator of type BAW, the first acoustic resonator having a frequency of resonance series approximately equal to the frequency of parallel resonance of the second acoustic resonator, the branch parallel of the first quadripole having a first capacitance connected in series with the second resonator and, in parallel with the capacitance, a first switching transistor to short circuit the capacitance.
摘要:
A filtering circuit with BAW type acoustic resonators having at least a first quadripole and a second quadripole connected in cascade, each quadripole having a branch series with a first acoustic resonator of type BAW and a branch parallel with each branch having an acoustic resonator of type BAW, the first acoustic resonator having a frequency of resonance series approximately equal to the frequency of parallel resonance of the second acoustic resonator, the branch parallel of the first quadripole having a first capacitance connected in series with the second resonator and, in parallel with the capacitance, a first switching transistor to short circuit the capacitance.
摘要:
A bulk acoustic wave resonator has an adjustable resonance frequency. A piezoelectric element is provided having first and second electrodes. A switching element is provided in the form of a MEMS structure which is deformable between a first and second position. The switching element forms an additional electrode that is selectively disposed on top of, and in contact with, one of the first and second electrodes. This causes a total thickness of the electrode of the resonator to be changed resulting in a modification of the resonance frequency of the resonator.
摘要:
A bulk acoustic wave resonator has an adjustable resonance frequency. A piezoelectric element is provided having first and second electrodes. A switching element is provided in the form of a MEMS structure which is deformable between a first and second position. The switching element forms an additional electrode that is selectively disposed on top of, and in contact with, one of the first and second electrodes. This causes a total thickness of the electrode of the resonator to be changed resulting in a modification of the resonance frequency of the resonator.
摘要:
A reconfigurable power amplifier includes at least one amplification circuit (E1, E2), and a circuit (6) for controlling the amplification circuit so as to adapt its operation according to an applied input signal (RFin). The circuit for controlling includes a circuit (4, 5) for modifying the compression point of the amplification circuit and for adapting the gain of the amplification circuit in such a manner as to increase the power added efficiency of the circuit for the modified compression point.
摘要:
A reconfigurable power amplifier includes at least one amplification circuit (E1, E2), and a circuit (6) for controlling the amplification circuit so as to adapt its operation according to an applied input signal (RFin). The circuit for controlling includes a circuit (4, 5) for modifying the compression point of the amplification circuit and for adapting the gain of the amplification circuit in such a manner as to increase the power added efficiency of the circuit for the modified compression point.
摘要:
A radiofrequency signal power amplification circuit may include a signal input for receiving the radiofrequency signal, an amplification stage coupled to the signal input and having at least one power transistor, a biasing stage for delivering a bias voltage to the amplification stage, and a processing stage. The processing stage may include a processing input coupled to the signal input, a processing output for delivering a bias current modulated at least in amplitude to the biasing stage, and an amplitude modulator coupled between the processing input and the processing output and configured to determine an envelope signal representative of the envelope of the radiofrequency signal, for modulating the amplitude of the envelope signal based on a variable voltage setpoint and for generating the amplitude-modulated bias current based on the modulated envelope signal.
摘要:
A radiofrequency signal power amplification circuit may include a signal input for receiving the radiofrequency signal, an amplification stage coupled to the signal input and having at least one power transistor, a biasing stage for delivering a bias voltage to the amplification stage, and a processing stage. The processing stage may include a processing input coupled to the signal input, a processing output for delivering a bias current modulated at least in amplitude to the biasing stage, and an amplitude modulator coupled between the processing input and the processing output and configured to determine an envelope signal representative of the envelope of the radiofrequency signal, for modulating the amplitude of the envelope signal based on a variable voltage setpoint and for generating the amplitude-modulated bias current based on the modulated envelope signal.
摘要:
The frequency synthesizer includes a phase-locked loop (PLL). The PLL includes an oscillator controlled to deliver an output signal at a predefined output frequency, a variable frequency divider to convert the output signal into a divided-frequency signal, a phase comparator to produce a signal measuring a phase difference between the divided-frequency signal and a reference signal at a reference frequency, and a loop filter to control the oscillator on the basis of the measurement signal. To increase the speed of convergence of the synthesizer if the set point is changed, the loop filter of the PLL is a fractional, i.e. non-integer, order low-pass filter.
摘要:
Device for generating a signal of parametrizable frequency comprising a phase locked loop including a generator of a reference signal, a phase-frequency comparator comprising a first input for receiving the reference signal, an oscillator controlled on the basis of the result output by the phase-frequency comparator, a fractional divider coupled between an output of the oscillator and a second input of the phase-frequency comparator, and a selector selectively linking an input of the oscillator either with an input of the generator, or with the output of the oscillator as a function of the multiplication ratio of the fractional divider.