摘要:
Novel methods for biodegrading nitroaromatic compounds present as contaminants in soil or water using microorganisms are disclosed. Water is treatable directly; dry soil is first converted into a fluid medium by addition of water. The preferred method comprises two stages, each employing microorganisms: a fermentative stage, followed by an anaerobic stage. The fermentative stage is rapid, wherein an inoculum of aerobic and/or facultative microorganisms ferments a carbohydrate added to the fluid medium, exhausting the oxygen in the fluid medium and thereby inhibiting oxidative polymerization of amino by-products of the nitroaromatics. In the subsequent anaerobic stage, an inoculum of a mixed population of anaerobic microorganisms completes the mineralization of the contaminant nitroaromatics, using the remaining carbohydrate as a carbon and energy source. Preferably, the carbohydrate is a starch and the aerobic and/or facultative microorganisms are amylolytic, which cleave the starch at a moderate rate throughout both stages, ensuring a sustained supply of metabolizable carbohydrate. The microorganisms are preferably selected to be resistant to the types and concentrations of nitroaromatics present as contaminants.
摘要:
Methods for biodegrading nitroaromatic compounds present as contaminants in soil or water using microorganisms are disclosed. Water is treatable directly; dry soil is first converted into a fluid medium by addition of water. The preferred method comprises two stages, each employing microorganisms: a fermentative stage, followed by an anaerobic stage. The fermentative stage is rapid, wherein an inoculum of aerobic and/or facultative microorganisms ferments a carbohydrate added to the fluid medium, exhausting the oxygen in the fluid medium and thereby inhibiting oxidative polymerization of amino by-products of the nitroaromatics. In the subsequent anaerobic stage, an inoculum of a mixed population of anaerobic microorganisms completes the mineralization of the contaminant nitroaromatics, using the remaining carbohydrate as a carbon and energy source. Preferably, the carbohydrate is a starch and the aerobic and/or facultative microorganisms are amylolytic, which cleave the starch at a moderate rate throughout both stages, ensuring a sustained supply of metabolizable carbohydrate. The microorganisms are preferably selected to be resistant to the types and concentrations of nitroaromatics present as contaminants.
摘要:
Novel methods for biodegrading nitroaromatic compounds present as contaminants in soil or water using microorganisms are disclosed. Water is treatable directly; dry soil is first converted into a fluid medium by addition of water. The preferred method comprises two stages, each employing microorganisms: a fermentative stage, followed by an anaerobic stage. The fermentative stage is rapid, wherein an inoculum of aerobic and/or facultative microorganisms ferments a carbohydrate added to the fluid medium, exhausting the oxygen in the fluid medium and thereby inhibiting oxidative polymerization of amino by-products of the nitroaromatics. In the subsequent anaerobic stage an inoculum of a mixed population of anaerobic microorganisms completes the mineralization of the contaminant nitroaromatics, using the remaining carbohydrate as a carbon and energy source. Preferably, the carbohydrate is a starch and the aerobic and/or facultative microorganisms are amylolytic, which cleave the starch at a moderate rate throughout both stages, ensuring a sustained supply of metabolizable carbohydrate. The microorganisms are preferably selected to be resistant to the types and concentrations of nitroaromatics present as contaminants.
摘要:
Novel methods for biodegrading nitroaromatic compounds present as contaminants in soil or water using microorganisms are disclosed. Water is treatable directly; dry soil is first converted into a fluid medium by addition of water. The preferred method comprises two stages, each employing microorganisms: a fermentative stage, followed by an anaerobic stage. The fermentative stage is rapid, wherein an inoculum of aerobic and/or facultative microorganisms ferments a carbohydrate added to the fluid medium, exhausting the oxygen in the fluid medium and thereby inhibiting oxidative polymerization of amino by-products of the nitroaromatics. In the subsequent anaerobic stage, an inoculum of a mixed population of anaerobic microorganisms completes the mineralization of the contaminant nitroaromatics, using the remaining carbohydrate as a carbon and energy source. Preferably, the carbohydrate is a starch and the aerobic and/or facultative microorganisms are amylolytic, which cleave the starch at a moderate rate throughout both stages, ensuring a sustained supply of metabolizable carbohydrate. The microorganisms are preferably selected to be resistant to the types and concentrations of nitroaromatics present as contaminants.
摘要:
Novel methods for biodegrading nitroaromatic compounds present as contaminants in soil or water using microorganisms are disclosed. Water is treatable directly; dry soil is first converted into a fluid medium by addition of water. The preferred method comprises two stages, each employing microorganisms: a fermentative stage, followed by an anaerobic stage. The fermentative stage is rapid, wherein an inoculum of aerobic and/or facultative microorganisms ferments a carbohydrate added to the fluid medium, exhausting the oxygen in the fluid medium and thereby inhibiting oxidative polymerization of amino by-products of the nitroaromatics. In the subsequent anaerobic stage, an inoculum of a mixed population of anaerobic microorganisms completes the mineralization of the contaminant nitroaromatics, using the remaining carbohydrate as a carbon and energy source. Preferably, the carbohydrate is a starch and the aerobic and/or facultative microorganisms are amylolytic, which cleave the starch at a moderate rate throughout both stages, ensuring a sustained supply of metabolizable carbohydrate. The microorganisms are preferably selected to be resistant to the types and concentrations of nitroaromatics present as contaminants.
摘要:
A composition comprises an azo dye having a lignin-like substitution pattern and an environmentally common microbe, such as Streptomyces or Phanerochaete chrysosporium. The composition may also comprise an azo dye having a lignin-like substitution pattern, an amount of lignin peroxidase effective to degrade the dye, and an amount of veratryl alcohol effective to recycle lignin peroxidase II to lignin peroxidase. The lignin peroxidase may be provided by an environmentally common microbe. Azo dyes substituted with lignin-like groups are completely mineralized by the environmentally common microbe. The biodegradable azo dye preferably includes a first aromatic ring having a first substituent R1 selected from hydroxy or lower alkoxy, a second substituent R2 selected from lower alkyl or lower alkoxy, and a third substituent R3 selected from lower alkoxy or halogen. In especially preferred embodiments the first substituent R.sub.1 is hydroxy and is para to the azo group, and both R.sub.2 and R.sub.3 are electron-releasing substituents and are ortho to R.sub.1.
摘要:
A biodegradable azo dye contains a nitrogen atom linked to an aromatic ring having a lignin-like substitution pattern. The ring is preferably a syringyl or guaiacol moiety, and provides a naturally-occurring structure for attack by microorganisms, such as Streptomyces or Phanerochaete. In especially preferred embodiments, the aromatic ring has a first substituent R.sub.1 selected from among hydroxy, lower alkoxy, or amino, and a second substituent R.sub.2 selected from among lower alkyl, lower alkoxy and halogen. Some embodiments include a third ring substituent R.sub.3 selected from the group lower alkyl, lower alkoxy, and halogen.
摘要:
Three individual strains of anaerobic microorganisms are disclosed. Each has an ability to degrade nitroaromatic and nitramine compounds under anaerobic conditions. The strains, identified as LJP-1, SBF-1, and KMR-1, appear to be of Clostridium bifermentans. The strains were isolated from consortia of anaerobic microorganisms grown in a chemostat in which the "munitions" compounds TNT (as a representative nitroaromatic) and "RDX" nad "HMX" (as representative nitramines) were administered as sole sources of carbon for the microorganisms. The isolated strains, either individually or as mixtures thereof, can be used in methods for degrading, under anaerobic conditions (i.e., redox potential
摘要:
A downhole tool system includes a first downhole tool and a second downhole tool. The first downhole tool includes a first controller operable to receive an actuation signal including a tone. The first controller actuates the first downhole tool if the tone is a first specified frequency and changes the first downhole tool to communicate the actuation signal to the second downhole tool if first downhole tool is not actuated in response to the actuation signal. A second downhole tool includes a second controller operable to receive the actuation signal. The second controller actuates the second downhole tool if the tone is a second specified frequency. The second frequency is different from the first frequency.
摘要:
A downhole tool system includes a first downhole tool and a second downhole tool. The first downhole tool includes a first controller operable to receive an actuation signal including a tone. The first controller actuates the first downhole tool if the tone is a first specified frequency and changes the first downhole tool to communicate the actuation signal to the second downhole tool if first downhole tool is not actuated in response to the actuation signal. A second downhole tool includes a second controller operable to receive the actuation signal. The second controller actuates the second downhole tool if the tone is a second specified frequency. The second frequency is different from the first frequency.