摘要:
An improved source/drain extension process is provided by processing steps (steps A and G) that cover the wafer and dry etching steps (steps D and I) that provide side wall spacers of poly oxide and/or cap oxide from the PMOS gate areas before doing PMOS implanting steps(K and M). The capping of the wafer (step G)with the cap oxide after the NMOS implant also prevents the arsenic from out diffusing from the silicon. Further embodiments include implanting directly on the base.
摘要:
An improved source/drain extension process is provided by the following processing steps of implanting NMOS devices directly on either side of the gates without an oxide layer (step D2), covering the gates with a cap oxide layer(step E2), covering NMOS devices with photoresist(step F2), dry etching all PMOS devices (Step G2), and implanting PMOS devices (step I2).
摘要:
A method (100) of forming a transistor includes forming a gate structure (106, 108) over a semiconductor body and forming recesses (112) substantially aligned to the gate structure in the semiconductor body. Silicon germanium is then epitaxially grown (114) in the recesses, followed by forming sidewall spacers (118) over lateral edges of the gate structure. The method continues by implanting source and drain regions in the semiconductor body (120) after forming the sidewall spacers. The silicon germanium formed in the recesses resides close to the transistor channel and serves to provide a compressive stress to the channel, thereby facilitating improved carrier mobility in PMOS type transistor devices.
摘要:
A silicon nitride layer (110) is formed over a transistor gate (40) and source and drain regions (70). The as-formed silicon nitride layer (110) comprises a first tensile stress and a high hydrogen concentration. The as-formed silicon nitride layer (110) is thermally annealed converting the first tensile stress into a second tensile stress that is larger than the first tensile stress. Following the thermal anneal, the hydrogen concentration in the silicon nitride layer (110) is greater than 12 atomic percent.
摘要:
A method for forming an integrated circuit having multiple gate oxide thicknesses is disclosed herein. The circuit (10) is processed up to gate oxide formation. A pattern (36) is then formed exposing areas of the circuit where a thinner gate oxide (20) is desired. These areas are then implanted with a halogen species such as fluorine or chlorine, to retard oxidation. The pattern (36) is then removed and an oxidation step is performed. Oxidation is selectively retarded in areas (14) previously doped with the halogen species but not in the remaining areas (12). Thus, a single oxidation step may be used to form gate oxides (20,22) of different thicknesses.
摘要:
A process and resulting product are described for controlling the channeling and/or diffusion of a boron dopant in a P- region forming the lightly doped drain (LDD) region of a PMOS device in a single crystal semiconductor substrate, such as a silicon substrate. The channeling and/or diffusion of the boron dopant is controlled by implanting the region, prior to implantation with a boron dopant,, with noble gas ions, such as argon ions, at a dosage at least equal to the subsequent dosage of the implanted boron dopant, but not exceeding an amount equivalent to the implantation of about 3.times.10.sup.13 argon ions/cm.sup.2 into a silicon substrate, whereby channeling and diffusion of the subsequently implanted boron dopant is inhibited without, however, amorphizing the semiconductor substrate.
摘要翻译:描述了一种工艺和产生的产品,用于控制在诸如硅衬底的单晶半导体衬底中形成PMOS器件的轻掺杂漏极(LDD)区域的P区中的硼掺杂剂的沟道化和/或扩散。 硼掺杂剂的通道和/或扩散通过在用硼掺杂剂注入之前用惰性气体离子(例如氩离子)注入该区域,剂量至少等于注入硼的后续剂量 掺杂剂,但不超过与硅衬底中注入约3×1013氩离子/ cm 2相当的量,由此抑制随后注入的硼掺杂剂的通道化和扩散,而不会使半导体衬底非晶化。
摘要:
A transistor is fabricated upon a semiconductor substrate, where the yield strength or elasticity of the substrate is enhanced or otherwise adapted. A strain inducing layer is formed over the transistor to apply a strain thereto to alter transistor operating characteristics, and more particularly to enhance the mobility of carriers within the transistor. Enhancing carrier mobility allows transistor dimensions to be reduced while also allowing the transistor to operate as desired. However, high strain and temperature associated with fabricating the transistor result in deleterious plastic deformation. The yield strength of the silicon substrate is therefore adapted by incorporating nitrogen into the substrate, and more particularly into source/drain extension regions and/or source/drain regions of the transistor. The nitrogen can be readily incorporated during transistor fabrication by adding it as part of source/drain extension region formation and/or source/drain region formation. The enhanced yield strength of the substrate mitigates plastic deformation of the transistor due to the strain inducing layer.
摘要:
A method of fabricating a CMOS transistor using a silicon germanium disposable spacer (114) for the source/drain implant. After gate etch, silicon germanium disposable spacers (114) are formed. A NMOS resist pattern (116) is formed exposing the NMOS regions (120) and the n-type source/drain implant is performed. The disposable spacers (114) in the NMOS regions are removed and, with the NMOS resist mask (116) still in place, the LDD/MDD implant is performed. The process may then be repeated for the PMOS regions (122).
摘要:
A method for forming an integrated circuit having multiple gate oxide thicknesses is disclosed herein. The circuit (10) is processed up to gate oxide formation. A first gate dielectric (20) is formed. Next, a disposable layer (22) is formed over the first gate dielectric (20). The disposable layer (22) comprises a material that may be removed selectively with respect to silicon and the gate dielectric, such as germanium. If desired, a second dielectric layer (24) may be formed over the disposable layer (22). A pattern (26) is then formed exposing areas (14) of the circuit where a thinner gate dielectric is desired. The second dielectric layer (24), if it is present, and the disposable layer (22) are removed from the exposed areas. The pattern (26) is then removed. Following pre-gate cleaning, the second gate dielectric (30) is formed. The remaining portions of the disposable layer (22) may be removed either prior to, during, or after the second gate dielectric formation (30).
摘要:
Semiconductor devices (102) and fabrication methods (10) are provided, in which a nitride film (130) is formed over NMOS transistors to impart a tensile stress in ail or a portion of the NMOS transistor to improve carrier mobility. The nitride layer (130) is initially deposited over the transistors at low temperature with high hydrogen content to provide a moderate tensile stress in the semiconductor body prior to back-end processing. Subsequent back-end thermal processing reduces the film hydrogen content and causes an increase in the applied tensile stress.