摘要:
Improved mechanical properties of both clay and carbon nanotube (CNT)-reinforced polymer matrix nanocomposites are obtained by dispersing those nanoparticles using a microfluidic process. Well-dispersed particles are obtained that sufficiently improve mechanical properties of the nanocomposites, such as flexural strength and modulus.
摘要:
An industrial scale method for patterning nanoparticle emitters for use as cathodes in a display device is disclosed. The low temperature method can be practiced in high volume applications, with good uniformity of the resulting display device. The method steps involve deposition of CNT emitter material over an entire surface of a prefabricated composite structure, and subsequent removal of the CNT emitter material from unwanted portions of the surface using physical methods.
摘要:
Substantially enhanced field emission properties are achieved by using a process of covering a non-adhesive material (for example, paper, foam sheet, or roller) over the surface of the CNTs, pressing the material using a certain force, and removing the material.
摘要:
Carbon nanotubes, which in several embodiments are mixed with particles, organic materials, non-organic materials, or solvents, are deposited on a substrate to form a cold cathode. The deposition of the carbon nanotube mixture is performed using an ink jet printing process.
摘要:
A method for forming cathodes for use in field emission devices using nanoparticles, such as carbon nanotubes (CNTs), is disclosed. The CNT layer comprises the electron emitting material on the surface of the cathode. Using the methods of the present invention, the density of the deposited CNTs may be modulated by forming emitter islands on the surface of the cathode. The size and distribution of the CNT emitter islands serve to optimize the field emission properties of the resulting CNT layer. In one embodiment, the CNT emitter islands are formed using a screen-printing deposition method. The present invention may be practiced without further process steps after deposition which activate or align the carbon nanotubes for field emission.
摘要:
An article of manufacture comprises a carbon-containing matrix. The carbon-containing matrix may comprise at least one type of carbon material selected from the group comprising graphite crystalline carbon materials, carbon powder, and artificial graphite powder. In addition, the carbon-containing matrix comprises a plurality of pores. The article of manufacture also comprises a metal component comprising Al, alloys of Al, or combinations thereof. The metal component is disposed in at least a portion of the plurality of pores. Further, the article of manufacture comprises an additive comprising at least Si. At least a portion of the additive is disposed in an interface between the metal component within the pores and the carbon-containing matrix. The additive enhances phonon coupling and propagation at the interface.
摘要:
Particles, which may include nanoparticles, are mixed with carbon nanotubes and deposited on a substrate to form a cold cathode. The particles enhance the field emission characteristics of the carbon nanotubes. An additional activation step may be performed on the deposited carbon nanotube mixture to further enhance the emission of electrons.
摘要:
The present invention is directed toward methods for incorporating low work function metals and salts of such metals into carbon nanotubes for use as field emitting materials. The present invention is also directed toward field emission devices, and associated components, comprising treated carbon nanotubes that have, incorporated into them, low work function metals and/or metal salts, and methods for making same. The treatments of the carbon nanotubes with the low work function metals and/or metal salts serve to improve their field emission properties relative to untreated carbon nanotubes when employed as a cathode material in field emission devices.
摘要:
A method for forming cathodes for use in field emission devices using nanoparticles, such as carbon nanotubes (CNTs), is disclosed. The CNT layer comprises the electron emitting material on the surface of the cathode. Using the methods of the present invention, the density of the deposited CNTs may be modulated by forming emitter islands on the surface of the cathode. The size and distribution of the CNT emitter islands serve to optimize the field emission properties of the resulting CNT layer. In one embodiment, the CNT emitter islands are formed using a screen-printing deposition method. The present invention may be practiced without further process steps after deposition which activate or align the carbon nanotubes for field emission.
摘要:
Substantially enhanced field emission properties are achieved by using a process of covering a non-adhesive material (for example, paper, foam sheet, or roller) over the surface of the CNTs, pressing the material using a certain force, and removing the material.