Abstract:
Provided is an electro-optic modulating device. The electro-optic modulating device includes an optical waveguide with a vertical structure and sidewalls of the vertical structure are used to configure a junction.
Abstract:
Provided is a waveguide photodetector that may improve an operation speed and increase or maximize productivity. The waveguide photodetector includes a waveguide layer extending in a first direction, an absorption layer disposed on the waveguide layer, a first electrode disposed on the absorption layer, a second electrode disposed on the waveguide layer, the second electrode being spaced from the first electrode and the absorption layer in a second direction crossing the first direction, and at least one bridge electrically connecting the absorption layer to the second electrode.
Abstract:
Provided is an electro-optic modulating device. The electro-optic modulating device includes an optical waveguide with a vertical structure and sidewalls of the vertical structure are used to configure a junction.
Abstract:
Provided is a waveguide photodetector that may improve an operation speed and increase or maximize productivity. The waveguide photodetector includes a waveguide layer extending in a first direction, an absorption layer disposed on the waveguide layer, a first electrode disposed on the absorption layer, a second electrode disposed on the waveguide layer, the second electrode being spaced from the first electrode and the absorption layer in a second direction crossing the first direction, and at least one bridge electrically connecting the absorption layer to the second electrode.
Abstract:
Provided is a waveguide photodetector that may improve an operation speed and increase or maximize productivity. The waveguide photodetector includes a waveguide layer extending in a first direction, an absorption layer disposed on the waveguide layer, a first electrode disposed on the absorption layer, a second electrode disposed on the waveguide layer, the second electrode being spaced from the first electrode and the absorption layer in a second direction crossing the first direction, and at least one bridge electrically connecting the absorption layer to the second electrode.
Abstract:
Apparatus and methods for, among other things, a grouped based reactive service discovery protocol are discussed. In an example, a method can include broadcasting a first group beacon at a group interval using a first station belonging to a first group of stations and broadcasting a service request to the second group during a query interval of the second group. In an example, the first group beacon can include a service update alert configured to alert other members of the first group of an anticipated service request and response event to learn services available from a second group.
Abstract:
A security system for an external data storage apparatus and control method thereof are disclosed. The system utilizes a preset identification (ID) and input ID to selectively permit data to be written and/or read.
Abstract:
A display device is disclosed. The display device includes a display panel, a frame disposed in the rear of the display panel, a backlight unit disposed between the display panel and the frame, a driver attached to a back surface of the frame, and a back cover that is disposed in the rear of the driver and is connected to the back surface of the frame. At least one of the frame and the back cover includes a heat dissipation member.
Abstract:
Embodiments of a system and method for secure discovery and identification of devices via a wireless network are generally described herein. In some embodiments a wireless device may transmit an anonymous ephemeral identifier that may be utilized by a second device to determine, by accessing a provider or social network, whether the private identity masked by the ephemeral identifier is known to the user of the second device. In some embodiments a provider may receive user or device registrations; maintain a record of private identifiers, ephemeral identifiers, and known user data for a plurality of users; and access one or more social networks to acquire known user data. The ephemeral identifiers may be periodically updated by the provider. In some embodiments a discovery module in a plurality of devices may automatically establish a communication connection between devices in response to a previously established relationship between users of the respective devices.
Abstract:
Disclosed herein is a method for manufacturing a printed circuit board with optical waveguides capable of reducing light loss by forming a bent portion having a changing pattern shape on a core layer and attaching a reflective member thereto to increase reflectivity. The method for manufacturing a printed circuit board with optical waveguides includes; (a) forming a lower clad layer on a base substrate; (b) applying a core material onto the lower clad layer; (c) performing exposure on the core material using a photo mask having a pattern; (d) performing development on the core material subjected to the exposure and forming a bent portion having a changing pattern shape to form a core layer; (e) applying an upper clad layer onto the lower clad layer having the core layer formed thereon; (f) performing exposure and development on the upper clad layer to expose a reflective portion of the machined bent portion to the outside; and (g) attaching a reflective member to the reflective portion exposed to the outside. Therefore, the bent portion having the changing pattern shape is machined to have a curved shape or an oblique shape and the reflective member is attached thereto, thereby making it possible to minimize light loss.