摘要:
Methods and apparatus for manipulation, detection, imaging, characterization, sorting and/or assembly of biological or other materials, involving an integration of CMOS or other semiconductor-based technology and microfluidics. In one implementation, various components relating to the generation of electric and/or magnetic fields are implemented on an IC chip that is fabricated using standard protocols. The generated electric and/or magnetic fields are used to manipulate and/or detect one or more dielectric and/or magnetic particles and distinguish different types of particles. A microfluidic system is fabricated either directly on top of the IC chip, or as a separate entity that is then appropriately bonded to the IC chip, to facilitate the introduction and removal of cells in a biocompatible environment, or other particles/objects of interest suspended in a fluid. The patterned electric and/or magnetic fields generated by the IC chip can trap and move biological cells or other objects inside the microfluidic system. Electric and/or magnetic field generating components also may be controlled using signals of various frequencies so as to detect one or more cells, particles or objects of interest, and even the type of particle or object of interest, by measuring resonance characteristics associated with interactions between samples and one or more of the field-generating devices. Such systems may be employed in a variety of biological and medical related applications, including cell sorting and tissue assembly.
摘要:
Microscopy methods and apparatus for manipulation, detection, imaging, characterization, sorting and/or assembly of biological or other materials, involving an integration of CMOS or other semiconductor-based technology and microfluidics in connection with a microscope. In one implementation, a microscope including optics and a stage is outfitted with various components relating to the generation of electric and/or magnetic fields, which are implemented on an IC chip. A microfluidic system is fabricated either directly on top of the IC chip, or as a separate entity that is then appropriately bonded to the IC chip, to facilitate the introduction and removal of cells in a biocompatible environment, or other particles/objects of interest suspended in a fluid. The patterned electric and/or magnetic fields generated by the IC chip can trap and move biological cells or other objects inside the microfluidic system to facilitate viewing via the microscope.
摘要:
Methods and apparatus for manipulation, detection, imaging, characterization, sorting and/or assembly of biological or other materials, involving an integration of CMOS or other semiconductor-based technology and microfluidics. In one implementation, various components relating to the generation of electric and/or magnetic fields are implemented on an IC chip that is fabricated using standard protocols. The generated electric and/or magnetic fields are used to manipulate and/or detect one or more dielectric and/or magnetic particles and distinguish different types of particles. A microfluidic system is fabricated either directly on top of the IC chip, or as a separate entity that is then appropriately bonded to the IC chip, to facilitate the introduction and removal of cells in a biocompatible environment, or other particles/objects of interest suspended in a fluid. The patterned electric and/or magnetic fields generated by the IC chip can trap and move biological cells or other objects inside the microfluidic system. Electric and/or magnetic field generating components also may be controlled using signals of various frequencies so as to detect one or more cells, particles or objects of interest, and even the type of particle or object of interest, by measuring resonance characteristics associated with interactions between samples and one or more of the field-generating devices. Such systems may be employed in a variety of biological and medical related applications, including cell sorting and tissue assembly.
摘要:
Irradiation methods and apparatus configured to deliver power, via electromagnetic fields at a variety of frequencies and power levels, in a localized fashion to a target area. In one example, an electromagnetic field generator is disposed on a substrate and configured to deliver power via electromagnetic energy to a thin region proximate to (above) a surface of the substrate, wherein electromagnetic field intensity decreases significantly beyond the thin region. Such methods and apparatus are particularly useful in a wide variety of processes involving chemical and/or physical interactions in connection with a sample of interest located in the thin region. In different aspects, irradiator apparatus may be configured as disposable devices, and/or used in combination with one or more microfluidic or sensing components, for a variety of medical/laboratory/diagnostic methods and instrumentation implementations.
摘要:
The present disclosure relates generally to methods and apparatus for manipulating, detecting, imaging, and/or identifying particles, fluids, or other objects via electromagnetic fields, including methods and apparatus for identifying, sorting, splitting, coalescing, and/or reacting such particles, fluids, or other objects. Certain aspects of the invention are generally directe to methods and devices for producing electric or magnetic fields, e.g., from one or more field-generating components (200) (for example, arranged in an array), to control or manipulate a particle, fluid, or other object. For example, a fluidic droplet may be identified, sorted, separated, split, fused or coalesced, mixed, charged, sensed, determined, etc., using various systems and methods as described herein. In some cases, a particle, a fluidic species (e.g., a droplet), or another object may be contained or constrained by one or more layers of fluid. Other aspects of the invention are directed to methods of making such devices, methods of promoting the making or use of such devices, or the like.
摘要:
Dielectrophoretic (DEP) tweezers apparatus and methods for various applications, including particle trapping. Two electrodes are disposed on or otherwise constitute an elongated object forming a tip. A voltage is applied across these electrodes to produce a non-uniform electromagnetic field proximate to the tip thereby creating a dielectrophoretic trap. Once trapped, a particle may be moved to desired locations via manipulation of the elongated object or the medium in which the particle is located. Multiple DEP tweezers apparatus may be arranged to form arrays of tips capable of respectively generating local electromagnetic fields confined to the tips. Such DEP arrays may be employed in nanofabrication processes involving nanolithography or nano-manipulation, as well as data storage and retrieval applications.
摘要:
Dielectrophoretic (DEP) tweezers apparatus and methods for various applications, including particle trapping. Two electrodes are disposed on or otherwise constitute an elongated object forming a tip. A voltage is applied across these electrodes to produce a non-uniform electromagnetic field proximate to the tip thereby creating a dielectrophoretic trap. Once trapped, a particle may be moved to desired locations via manipulation of the elongated object or the medium in which the particle is located. Multiple DEP tweezers apparatus may be arranged to form arrays of tips capable of respectively generating local electromagnetic fields confined to the tips. Such DEP arrays may be employed in nanofabrication processes involving nanolithography or nano-manipulation, as well as data storage and retrieval applications.
摘要:
Dielectrophoretic (DEP) tweezers apparatus and methods for various applications, including particle trapping. Multiple electrodes (e.g., two or three) are disposed on or otherwise constitute an elongated object forming a tip. Exemplary electrode configurations include, but are not limited to, coaxial and triaxial arrangements. A voltage is applied across these electrodes to produce a non-uniform electromagnetic field proximate to the tip thereby creating a dielectrophoretic trap. Once trapped, a particle may be moved to desired locations via manipulation of the elongated object or the medium in which the particle is located. Multiple DEP tweezers apparatus may be arranged to form arrays of tips capable of respectively generating local electromagnetic fields confined to the tips. Such DEP arrays may be employed in nanofabrication processes involving nanolithography or nano-manipulation, as well as data storage and retrieval applications.
摘要:
Dielectrophoretic (DEP) tweezers apparatus and methods for various applications, including particle trapping. Multiple electrodes (e.g., two or three) are disposed on or otherwise constitute an elongated object forming a tip. Exemplary electrode configurations include, but are not limited to, coaxial and triaxial arrangements. A voltage is applied across these electrodes to produce a non-uniform electromagnetic field proximate to the tip thereby creating a dielectrophoretic trap. Once trapped, a particle may be moved to desired locations via manipulation of the elongated object or the medium in which the particle is located. Multiple DEP tweezers apparatus may be arranged to form arrays of tips capable of respectively generating local electromagnetic fields confined to the tips. Such DEP arrays may be employed in nanofabrication processes involving nanolithography or nano-manipulation, as well as data storage and retrieval applications.
摘要:
A system and method for trapping in electrophotographic color printing and related technologies for printing or display in which the final image is an overlay of multiple components subject to alignment errors. Trapping is based on the cyan (C), magenta (M), and black (K) planes. There are four steps as follows: detect object edges on each of the four color planes; detect coincident and opposing edge transitions on each pair of planes (CM, CK, and KM); determine which plane to trap, i.e., to extend object across edge; and generate trap on that plane using a simple trap generation rule and a single trap generation rule.