Abstract:
A semiconductor memory device may include a substrate having a plurality of active regions and a field isolation layer on the substrate surrounding the active regions of the substrate. Each of the plurality of active regions may have a length in a direction of a first axis and a width in a direction of a second axis, and the length may be greater than the width. The plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis, and active regions of adjacent columns may be offset in the direction of the second axis.
Abstract:
Nanoimprint lithography templates and methods of fabricating semiconductor devices using the nanoimprint lithography templates are provided. The nanoimprint lithography template includes a transparent substrate having a first refractive index, a stamp pattern on a surface on the transparent substrate and having inclined sidewalls, and a coating layer formed on the inclined sidewalls of the stamp pattern, the coating layer having a second refractive index higher than the first refractive index.
Abstract:
A semiconductor memory device may include a substrate having a plurality of active regions wherein each active region has a length in a direction of a first axis and a width in a direction of a second axis. The length may be greater than the width, and the plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis. A plurality of wordline pairs may be provided on the substrate, with each wordline pair crossing active regions of a respective column of active regions defining a drain portion of each active region between wordlines of the respective wordline pair. A plurality of bitlines on the substrate may cross the plurality of wordline pairs, with each bitline being electrically coupled to a respective drain portion of an active region of each column, and with each bitline being arranged between the respective drain portion and another drain portion of an adjacent active region of the same column.
Abstract:
A semiconductor memory device comprises a plurality of rows, each row comprising a plurality of active regions arranged at a pitch wherein the active regions in adjacent rows are shifted with respect to each other by one half of the pitch, wherein a distance between each active region in a row is equal to a distance between active regions in adjacent rows.
Abstract:
Embodiments of the invention provide methods of forming SAC pads in non-straight semiconductor device having non-straight type or separate type active regions. A plurality of gate line structures extending in one direction may be formed on a semiconductor substrate having non-straight active regions. An interlayer insulating layer covering gate line structures may be formed on the gate line structures. Then, a photo-resist layer may be formed on the interlayer insulating layer. A photo-resist pattern may be formed through exposing and developing the photo-resist layer by using a photo-mask having, for example, a bar type, a wave type, or a reverse active type pattern. Then, contact holes exposing source/drain regions may be formed by etching the interlayer insulating layer using the photo-resist pattern as an etching mask. Contact pads may then be formed by filling the contact holes with a conductive material.
Abstract:
In a method of forming fine patterns, a photocurable coating layer is formed on a substrate. A first surface of a template makes contact with the photocurable coating layer. The first surface of the template includes at least two first patterns having a first dispersion degree of sizes, and at least one portion of the first surface of the template includes a photo attenuation member. A light is irradiated onto the photocurable coating layer through the template to form a cured coating layer including second patterns having a second dispersion degree of sizes. The second patterns are generated from the first patterns and the second dispersion degree is less than the first dispersion degree. The template is separate from the cured coating layer. A size dispersion degree of the patterns used in a nanoimprint lithography process may be adjusted by the light attenuation member, so that the fine patterns may be formed to have an improved size dispersion degree.
Abstract:
A semiconductor memory device may include a substrate having a plurality of active regions and a field isolation layer on the substrate surrounding the active regions of the substrate. Each of the plurality of active regions may have a length in a direction of a first axis and a width in a direction of a second axis, and the length may be greater than the width. The plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis, and active regions of adjacent columns may be offset in the direction of the second axis.
Abstract:
A semiconductor memory device includes a plurality of rows, each row comprising a plurality of active regions arranged at a pitch wherein the active regions in adjacent rows are shifted with respect to each other by one half of the pitch, wherein a distance between each active region in a row is equal to a distance between active regions in adjacent rows.
Abstract:
Embodiments of the invention provide methods of forming SAC pads in non-straight semiconductor device having non-straight type or separate type active regions. A plurality of gate line structures extending in one direction may be formed on a semiconductor substrate having non-straight active regions. An interlayer insulating layer covering gate line structures may be formed on the gate line structures. Then, a photo-resist layer may be formed on the interlayer insulating layer. A photo-resist pattern may be formed through exposing and developing the photo-resist layer by using a photo-mask having, for example, a bar type, a wave type, or a reverse active type pattern. Then, contact holes exposing source/drain regions may be formed by etching the interlayer insulating layer using the photo-resist pattern as an etching mask. Contact pads may then be formed by filling the contact holes with a conductive material.
Abstract:
A semiconductor memory device may include a substrate having a plurality of active regions wherein each active region has a length in a direction of a first axis and a width in a direction of a second axis. The length may be greater than the width, and the plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis. A plurality of wordline pairs may be provided on the substrate, with each wordline pair crossing active regions of a respective column of active regions defining a drain portion of each active region between wordlines of the respective wordline pair. A plurality of bitlines on the substrate may cross the plurality of wordline pairs, with each bitline being electrically coupled to a respective drain portion of an active region of each column, and with each bitline being arranged between the respective drain portion and another drain portion of an adjacent active region of the same column.