摘要:
Optical and optoelectronic articles incorporating an amorphous diamond-like film are disclosed. Specifically, the invention includes optical or optoelectronic articles containing an amorphous diamond-like film overlying two or more proximate substrates, and to methods of making optical and optoelectronic articles. In certain implementations, the film comprises at least about 30 atomic percent carbon, from about 0 to about 50 atomic percent silicon, and from about 0 to about 50 atomic percent oxygen on a hydrogen-free basis. Another embodiment includes optical or optoelectronic articles containing an amorphous diamond-like film that is further coated with a metallic or polymeric material for attachment to a device package.
摘要:
Optical and optoelectronic articles incorporating an amorphous diamond-like film are disclosed. Specifically, the invention includes optical or optoelectronic articles containing an amorphous diamond-like film overlying two or more proximate substrates, and to methods of making optical and optoelectronic articles. In certain implementations, the film comprises at least about 30 atomic percent carbon, from about 0 to about 50 atomic percent silicon, and from about 0 to about 50 atomic percent oxygen on a hydrogen-free basis. Another embodiment includes optical or optoelectronic articles containing an amorphous diamond-like film that is further coated with a metallic or polymeric material for attachment to a device package.
摘要:
A method for manufacturing an optical waveguide refractive index grating having a desired grating pitch &Lgr;. The method includes the step of providing a photosensitive waveguide and a writing beam of actinic radiation, the writing beam having an intensity. The waveguide is translated relative to the writing beam at a velocity v(t). The intensity of the writing beam is modulated as a function of time at a frequency f(t), wherein v ( t ) f ( t ) ≈ Λ . The step of modulating the intensity of the writing beam as a function of time f(t) at a frequency f(t) including the step of varying &Lgr;.
摘要:
A method and an apparatus for stretching an optical pulse and shaping its spectrum. The method includes the step of: providing a an optical fiber element having a first long length fiber Bragg grating having a refractive index perturbation of varying periodicity. The optical pulse is launched into the fiber Bragg grating, wherein the Bragg grating reflects the pulse in a chromatically dispersed output. The reflected output is coupled with an optical modulator programmed to temporally modify the amplitude of the chromatically dispersed output to attenuate selected optical frequencies in a desired pattern. The apparatus for stretching and arbitrarily shaping the spectrum of an optical pulse with a desired wavelength resolution &Dgr;&lgr;res includes a routing optical device and an optical fiber element having a Bragg grating. The routing optical device routs energy between different waveguides, and has an input port to receive the optical pulse.
摘要:
A long length continuous phase Bragg reflector and the method and an apparatus for writing the gratings into an optical fiber. The method includes the steps of providing a photosensitive optical fiber and a writing beam. A periodic intensity distribution of period &Lgr; is created from the writing beam and the optical fiber is translated relative to the intensity distribution at a velocity v(t). The intensity of the writing beam is modulated as a function of time at a frequency f(t), where. v(t)/f(t)≈&Lgr;. The intensity of the writing beam is varied further to control the envelope of the refractive index profile to write apodized gratings. The gratings measure at least 2.5 meters in length.
摘要:
A method and an apparatus for writing arbitrary refractive index perturbations along an optical waveguide. The method includes the steps of providing a waveguide having a photosensitive region and providing a writing beam of actinic radiation having a nominal diameter D, the writing beam defining an optical axis. A waveguide is translated relative to the optical axis of the writing beam at a known velocity v(t). A modulator modulates the radiation intensity I(t) of the writing beam as a function of time t to deliver a fluence of radiation, .PHI.(x), directly to the waveguide, wherein ##EQU1## The refractive index change .DELTA.n.sub.(x) at a position x along the waveguide length is related to the fluence delivered to that position as, .DELTA.n.sub.(x) =C.multidot..PHI..sub.(x), wherein C is a scaling factor that accounts for the photosensitivity of the waveguide.
摘要:
A method for increasing the photosensitivity of a selected portion of an optical fiber and for producing a grating in the selected portion of an optical fiber. The method includes the step of placing the selected portion of the optical fiber in a hydrogen containing atmosphere. The volume of the hydrogen-containing atmosphere immediately surrounding only the selected portion of the optical fiber is heated to a temperature of at least 250° C. Only the selected portion of the optical fiber is exposed to the heated volume of the hydrogen-containing atmosphere at a temperature of at least 250° C. for a predetermined time.
摘要:
The present invention generally concerns the use of Bragg optical fibers in chirped pulse amplification systems for the production of high-pulse-energy ultrashort optical pulses. A gas-core Bragg optical fiber waveguide can be advantageously used in such systems to stretch the duration of pulses so that they can be amplified, and/or Bragg fibers can be used to compress optical signals into much shorter duration pulses after they have been amplified. Bragg fibers can also function as near-zero-dispersion delay lines in amplifier sections.
摘要:
A method for screening the quality of an optical component including the step of simulating the performance of the optical component. The step of simulating includes the step of measuring the optical phase &phgr; of the optical component, wherein the step of measuring comprises indirectly measuring the optical phase &phgr; of the optical component using a scanning laser having a scanning step size &Dgr;&ohgr; and a modulation frequency &ohgr;m such that &Dgr;&ohgr;/&ohgr;m≦2. The light throughput R of the optical component is then measured. A transfer function H as a function of optical frequency &ohgr; is constructed where H(&ohgr;)=R(&ohgr;)exp[j&phgr;(&ohgr;)], and the performance is simulated using the measured value of the optical phase and the light throughput into the transfer function.
摘要:
The present invention generally concerns the use of Bragg optical fibers in chirped pulse amplification systems for the production of high-pulse-energy ultrashort optical pulses. A gas-core Bragg optical fiber waveguide can be advantageously used in such systems to stretch the duration of pulses so that they can be amplified, and/or Bragg fibers can be used to compress optical signals into much shorter duration pulses after they have been amplified. Bragg fibers can also function as near-zero-dispersion delay lines in amplifier sections.