Abstract:
A surface plasmon resonance sensor element includes a thin metallic layer, an optical construction disposed on the thin metallic layer for directing light to and away from the thin metallic layer, and an absorptive layer disposed on the thin metallic layer opposite the optical construction. The absorptive layer includes a polymer of intrinsic microporosity having an average pore volume of at least 0.4 cubic nanometers.
Abstract:
Fiducials having substantially continuous portions made on a substrate allow the position of the substrate to be determined. An approach for making fiducials involves moving first and second fiducial devices together back and forth across the substrate along a trajectory having a component along the lateral axis of the substrate while the substrate and the first and second fiducial devices are in relative motion along the longitudinal axis of the substrate. The first fiducial device operates to make one fiducial on the substrate during the movement along the trajectory and the relative motion. The second fiducial device operates to make another fiducial on the substrate during the movement along the trajectory and the relative motion. The fiducials may be formed so that they have a constant spatial frequency with the first fiducial being out of phase with respect to the second fiducial.
Abstract:
A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
Abstract:
Fiducials having substantially continuous portions made on a substrate allow the position of the substrate to be determined. An approach for making fiducials involves moving first and second fiducial devices together back and forth across the substrate along a trajectory having a component along the lateral axis of the substrate while the substrate and the first and second fiducial devices are in relative motion along the longitudinal axis of the substrate. The first fiducial device operates to make one fiducial on the substrate during the movement along the trajectory and the relative motion. The second fiducial device operates to make another fiducial on the substrate during the movement along the trajectory and the relative motion. The fiducials may be formed so that they have a constant spatial frequency with the first fiducial being out of phase with respect to the second fiducial.
Abstract:
A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
Abstract:
Methods and systems for determining longitudinal position of an elongated web are described. Sensors are used to detect one or more substantially continuous fiducial marks disposed longitudinally on the web. The sensors generate signals associated with the fiducial marks. A position detector receives the signals and determines a longitudinal position of the web using the sensor signals. The fiducial marks may be periodic fiducial marks, such as sine and/or cosine marks on the web and/or may be piecewise continuous marks. The coarse longitudinal position of the web can be determined based on periodically recurring features of the fiducial marks. The fine longitudinal position can be determined based on continuous portions of the fiducial marks between the periodically recurring features.
Abstract:
Conductive ink formulations comprising a conductive polymer, metallic nanoparticles and a carrier are described. The formulations are printable on a surface, and annealed to form source and drain electrodes.
Abstract:
Optical and optoelectronic articles incorporating an amorphous diamond-like film are disclosed. Specifically, the invention includes optical or optoelectronic articles containing an amorphous diamond-like film overlying two or more proximate substrates, and to methods of making optical and optoelectronic articles. In certain implementations, the film comprises at least about 30 atomic percent carbon, from about 0 to about 50 atomic percent silicon, and from about 0 to about 50 atomic percent oxygen on a hydrogen-free basis. Another embodiment includes optical or optoelectronic articles containing an amorphous diamond-like film that is further coated with a metallic or polymeric material for attachment to a device package.
Abstract:
The bath tub (10) having side access has a main tub body (12), a door support, a tambour door assembly (16), a door seal 18 and a control system (20). The door support includes door guide assemblies (64). A tambour door (66) with a plurality of tambour slats (76 or 401) and a flexible impervious membrane (86) is guided by the door guide assemblies (64). The tambour door (66) is in a horizontal position under the floor (27) when it is open and in a vertical position closing the open side (28) of the main tub body (12) when it is closed. A seal (18) seals between the main tub body and the membrane (86). The seal (18) includes a tube (155) that is inflated to seal between the main tub (12) and the tambour door (66). The control system (20) closes the drain 46 when the tambour door (66) is closed and the seal (18) is inflated and the tambour door (66) is constrained in the closed position. The tambour door is constrained in the closed position until the control system 48 senses that the water level in the tub has dropped below a predetermined level and the seal (18) is deflated. A valance (114) limits movement of the tambour door (66) away from the seal (18).
Abstract:
A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.