摘要:
A method for manufacturing a component having increased thermal conductivity through layer-by-layer construction. At least one section of the component is constructed by applying a layer section having predetermined dimensions of a composite material of a metal and/or a metal alloy and particles of a highly heat-conducting material, including diamond and/or cubic boron nitride, in a predetermined area on a base layer by melting the metal or the metal alloy a heat source, in such a way that the metal and/or metal alloy form(s) within the predetermined dimensions a cohesive matrix, in which particles of the highly heat-conducting material are embedded, and then cooling.
摘要:
A method for producing a chemically modified metal surface or metal alloy surface or metal oxide layer or metal alloy oxide layer on the surface of a workpiece, which surface or layer includes surface structures having dimensions in the sub-micrometer range. The method involves scanning, one or several times using a pulsed laser beam, the entire surface of the metal or metal alloy, or the metal oxide layer or metal alloy oxide layer on the metal or metal alloy, on which surface or layer the structures are to be produced and which is accessible to laser radiation. The scanning is performed in an atmosphere containing a gas or gas mixture that reacts with the surface, such that adjacent flecks of light of the laser beam adjoin each other without an interspace in between or overlap and a predetermined range of a defined relation between process parameters is satisfied.
摘要:
A method is provided for the nanostructuring and oxidation of a surface, which has an anodizable metal and/or an anodizable metal alloy, both being coated with an oxide layer, by way of a laser or particle radiation in an inert or reactive atmosphere and subsequent anodization. As a result, oxide nanostructures are formed on the entire surface, in titanium or titanium alloys in the form of nanotubes.
摘要:
A method for producing a metal or metal alloy surface or metal oxide layer or metal alloy oxide layer on the surface of a workpiece having surface structures with dimensions in the sub-micrometer range, involves scanning the entire surface of the metal or of the metal alloy or of the metal or metal alloy oxide layer on the metal or the metal alloy on which the structures are to be produced and which are accessible to laser radiation one or more times by a pulsed laser beam in such a way that adjacent flecks of light of the laser beam adjoin one another without gaps or overlap one another and a specific region of a predetermined relation between method parameters is satisfied.