Abstract:
A valvetrain includes a rocker arm assembly having an electromagnetic latch housed in a chamber formed by a rocker arm. The chamber may be a retrofit hydraulic chamber. A flux shifting bi-stable latch provides a sufficiently compact design. Isolation of the magnetic elements within the rocker arm chamber may provide protection from metal particles carried by oil in an operating environment for the rocker arm assembly. Wiring connections to the rocker arms may be made through spring posts on the rocker arms. Connection to the rocker arms may be made with springs that can endure the rapid motion induced by the rocker arms. A wiring harness for the rocker arms may attach to hydraulic lash adjusters of the rocker arm assemblies. The rocker arm assemblies and their wiring may be formed into a unitary module that facilitates installation.
Abstract:
An apparatus for measuring at least one of temperature and pressure within a cylinder of an internal combustion engine can include an engine valve and a sensor. The internal combustion engine can include a valvetrain having rocker arm assembly, a camshaft, a valve, and a hydraulic lash adjuster. The engine valve can have a valve head and a valve stem extending from the valve head in an axial direction. The valve head can have a valve face configured to be in pressure communication with an engine cylinder. The valve stem can have an outer surface with a cylindrical portion and a variably-shaped portion. The variably-shaped portion can define a target detectable by the sensor and the sensor can be installed adjacent to the target. Alternatively, the sensor can be positioned to detect a level of force at some point along the valvetrain.
Abstract:
An internal combustion engine has a cylinder head mounted to an engine block that at least partially forms a plurality of cylinder combustion chambers. The cylinder head has multiple intake ports and multiple exhaust ports. Engine valves regulate the passage of gas into and out of the combustion chamber. Cam-operated engine valves are mechanically coupled to a rotating cam directly or through one or more of a variety of components that assist in transforming the rotational kinetic energy of the cam to linear motion of the engine valves. One of the exhaust valves and one of the intake valves are mechanically coupled to the cam. Electrohydraulic actuators actuate separate intake and exhaust valves of a particular cylinder. The electrohydraulic actuators are in fluid communication with a high pressure fluid source.
Abstract:
An internal combustion engine has a cylinder head mounted to an engine block that at least partially forms a plurality of cylinder combustion chambers. The cylinder head has multiple intake ports and multiple exhaust ports. Engine valves regulate the passage of gas into and out of the combustion chamber. Cam-operated engine valves are mechanically coupled to a rotating cam directly or through one or more of a variety of components that assist in transforming the rotational kinetic energy of the cam to linear motion of the engine valves. One of the exhaust valves and one of the intake valves are mechanically coupled to the cam. Electrohydraulic actuators actuate separate intake and exhaust valves of a particular cylinder. The electrohydraulic actuators are in fluid communication with a high pressure fluid source.
Abstract:
A valvetrain for an internal combustion engine of the type that has a combustion chamber, a moveable valve having a seat formed in the combustion chamber, and a camshaft includes a rocker arm assembly, a pivot providing a fulcrum for a rocker arm of the rocker arm assembly, and a latch assembly. An electrical device mounted to the rocker arm assembly receives power or communicates through a circuit that includes an electrical connection formed by abutment between surfaces of two distinct parts. The rocker arm assembly is operative to move one of the two abutting surfaces relative to the other in response to actuation of the cam follower. Forming an electrical connection through abutting surfaces that are free to undergo relative motion may reduce or eliminate the need to run wires to a mobile portion of the rocker arm assembly.
Abstract:
An actuator comprises a hollow first piston (11) comprising a first extant with a first outer diameter (D1) and a second extant comprising a second outer diameter (D2), where D1>D2. A second piston (12) is slidable within the first piston. An actuator housing (14) comprising a recess (22), a first tubular port (23) in communication with the first piston, and a second tubular port (24) in communication with the second piston. The first extant has a length (L1) and wherein the second extant has a length (L2). The first tubular port extends for a length (L4), and the recess extends for a length (L3), where L4≥L2, and where L3>L2>L1. The first piston and the second piston are housed in the recess.
Abstract:
An apparatus for measuring at least one of temperature and pressure within a cylinder of an internal combustion engine can include an engine valve and a sensor. The internal combustion engine can include a valvetrain having rocker arm assembly, a camshaft, a valve, and a hydraulic lash adjuster. The engine valve can have a valve head and a valve stem extending from the valve head in an axial direction. The valve head can have a valve face configured to be in pressure communication with an engine cylinder. The valve stem can have an outer surface with a cylindrical portion and a variably-shaped portion. The variably-shaped portion can define a target detectable by the sensor and the sensor can be installed adjacent to the target. Alternatively, the sensor can be positioned to detect a level of force at some point along the valvetrain.
Abstract:
A valvetrain includes a rocker arm assembly having an electromagnetic latch housed in a chamber formed by a rocker arm. The chamber may be a retrofit hydraulic chamber. A flux shifting bi-stable latch provides a sufficiently compact design. Isolation of the magnetic elements within the rocker arm chamber may provide protection from metal particles carried by oil in an operating environment for the rocker arm assembly. Wiring connections to the rocker arms may be made through spring posts on the rocker arms. Connection to the rocker arms may be made with springs that can endure the rapid motion induced by the rocker arms. A wiring harness for the rocker arms may attach to hydraulic lash adjusters of the rocker arm assemblies. The rocker arm assemblies and their wiring may be formed into a unitary module that facilitates installation.
Abstract:
An internal combustion engine includes a valvetrain having a rocker arm assembly including a rocker arm on which a latch pin is mounted. An actuator for the latch pin, including an electromagnet, is mounted separately from the rocker arm. Therefore, the rocker arm is able to move independently from the electromagnet. The electromagnet is operative to cause the latch pin to actuate through magnetic flux following a magnetic circuit that passes through the rocker arm. Mounting the electromagnet apart from the rocker arm allows wires powering the electromagnet to be held in relatively static positions. The magnetic circuit is arranged to bring magnetic flux into the latch pin, or a co-acting part, within the volume of the rocker arm. This enables a compact design that is suitable for installation in engines where the available space under the valve cover may be very limited.
Abstract:
A method of operating an internal combustion engine that includes a valvetrain having a rocker arm assembly including a rocker arm on which a latch pin is mounted. An actuator for the latch pin, including an electromagnet, is mounted separately from the rocker arm. Rocker arm position information is obtained by gathering and analyzing data relating to a current or voltage in an electrical circuit that is operative to power the electromagnet. The rocker arm position information is used to perform a diagnostic.