Abstract:
A circuit interrupter includes a first terminal, a second terminal, separable contacts moveable between a closed position and an open position, the first and second terminals being electrically disconnected from each other when the separable contacts are in the open position, a printed circuit board Rogowski coil structured to sense a current flowing between the first and second terminals, a current transformer structured to harvest power from the current flowing between the first and second terminals, an electronic trip unit including an other trip circuit structured to output a first trip signal to control the actuator to cooperate with an operating mechanism to trip open the separable contacts based on the current sensed by the current sensor and a thermal trip assembly structured to sense a temperature of a busbar and to output a second trip signal based on the sensed temperature.
Abstract:
A circuit for driving an actuator including a closing coil and an opening coil, the circuit including a first electrical switch, a second electrical switch, a third electrical switch, a first diode, a second diode, a third diode, and a capacitor electrically connected to a second terminal of the third electrical switch. The circuit is structured such that controlling the state of the first, second, and third transistors causes current flowing through the circuit to flow through one of the closing coil and the opening coil and to not flow through the other of the closing coil and the opening coil.
Abstract:
A thermal trip assembly for use with a busbar includes a fastener, an insulating sleeve, a temperature sensor structured to sense a temperature of the busbar, and a thermal trip circuit structured to output a trip signal based on the sensed temperature. A portion of the insulating sleeve is disposed between the temperature sensor and the busbar. The fastener couples the insulating sleeve and the temperature sensor to the busbar with the insulating sleeve being in direct contact with a portion of the busbar.
Abstract:
A circuit for sensing a direct current includes a first resistance and a second resistance. A first portion of the direct current flows through the first resistance and a second portion of the direct current flows through the second resistance. The circuit further includes a current sensor having an opening, first and second conductors inductively coupled with the current sensor, and a switching circuit having a pair of switches structured to alternatingly switch in order that the second portion of the direct current alternatingly flows through the first and second conductors. The second portion of the direct current flowing through the first conductor passes through the opening of the current sensor in a first direction and the second portion of the direct current flowing through the second conductor passes through the opening of the current sensor in a second direction opposite to the first direction.
Abstract:
The present invention discloses an interleaved LLC convertor with current sharing. The interleaved LLC convertor with current sharing comprises: an interleaved LLC circuit, consisting of an even number of LLC circuits connected in parallel; and a plurality of windings with the same quantity as that of the LLC circuits, wherein all first polarization terminals from each of LLC circuits at its DC output side together constitute a first output terminal; all first terminals from each of the windings together constitute a second output terminal; a first half of the plurality of windings surround a magnetic core in a first direction, and a second half of the plurality of windings surround the magnetic core in a second direction; each of the plurality of windings has the same inductance, and the first half of the plurality of windings are inversely coupled with the second half of the plurality of windings; and the second polarization terminal of each LLC circuit at its DC output side connects to a second terminal of one of the windings.
Abstract:
A direct current to direct current (DC/DC) converter includes a resonant converter stage, a buck stage, and a processor apparatus. The resonant converter stage includes a bridge circuit. The buck stage is configured to output an output voltage and an output current, is electrically connected in series with the resonant converter stage, and includes a buck switch. The processor apparatus is configured to sense the output voltage and the output current, and, based on the sensed output voltage and the sensed output current, to perform one of: (a) fixing a switching frequency of the bridge circuit to a predetermined maximum switching frequency and controlling the output voltage by controlling a duty cycle of the buck switch, and (b) fixing the duty cycle of the buck switch to a predetermined duty cycle and controlling the output voltage by controlling the switching frequency of the bridge circuit.
Abstract:
A circuit for driving an actuator including a closing coil and an opening coil, the circuit including a first electrical switch, a second electrical switch, a third electrical switch, a first diode, a second diode, a third diode, and a capacitor electrically connected to a second terminal of the third electrical switch. The circuit is structured such that controlling the state of the first, second, and third transistors causes current flowing through the circuit to flow through one of the closing coil and the opening coil and to not flow through the other of the closing coil and the opening coil.
Abstract:
The present invention discloses an interleaved LLC convertor with current sharing. The interleaved LLC convertor with current sharing comprises: an interleaved LLC circuit, consisting of an even number of LLC circuits connected in parallel; and a plurality of windings with the same quantity as that of the LLC circuits, wherein all first polarization terminals from each of LLC circuits at its DC output side together constitute a first output terminal; all first terminals from each of the windings together constitute a second output terminal; a first half of the plurality of windings surround a magnetic core in a first direction, and a second half of the plurality of windings surround the magnetic core in a second direction; each of the plurality of windings has the same inductance, and the first half of the plurality of windings are inversely coupled with the second half of the plurality of windings; and the second polarization terminal of each LLC circuit at its DC output side connects to a second terminal of one of the windings.