摘要:
A sample thickness measuring arrangement and method for measuring a thickness of a sample are proposed. The sample thickness measuring arrangement comprises a sample thickness measuring unit for measuring the thickness of a sample based on interferometry. Furthermore, it comprises a cryostat comprising a coolant reservoir and a sample observation unit for observing characteristics of a sample. The sample observation unit comprises a tube enclosing an observation volume, a thermal tube insulation layer and a window arrangement. The tube is open at a distal end and at a proximal end. The distal end of the tube is arranged. within a storage volume of the coolant reservoir. The tube has two lateral openings in its tube walls at opposing sides with regards to the observation volume. The tube walls are covered at their external side with the thermal tube insulation layer having two openings adjacent to the openings in the tube walls. The window arrangement comprises two opposing panes, each pane being arranged at one of the openings in the thermal insulation layer. The panes are transparent to light of a laser beam. The proposed approach enable precise and stable sample thickness measurements at cryogenic temperatures.
摘要:
The present invention relates to the automation of incubation, processing, harvesting and analysis of samples in a multi-cell plate. In particular, a multi-cell plate including a body with a plurality of cells is presented. Furthermore, an automated crystal harvesting and processing system with a cutting unit, a fluid unit and a removing device is presented. The multi-cell plate further includes a sealing film for sealing the cells on a first side of the body and a sample film for sealing the cells on a second side of the body. The sample film is adapted for accommodating a biological material for crystallization. Furthermore, the sample film is of a thickness and composition that makes it compatible with x-rays and also with laser ablation. The design of the multi-cell plate and the automated crystal harvesting and processing system allows for several steps of incubation, processing, harvesting and analysis of the samples to be automated.
摘要:
The present invention relates to a pump (15) for pumping a coolant (9) within a Dewar vessel (1) and to a corresponding Dewar vessel (1) for storing samples in a coolant (9). The Dewar vessel (1) comprises a thermally insulated reservoir (3) for the coolant (9) and a sample vessel (11) provided separately and arranged in the thermally insulated reservoir (3). The reservoir (3) is connected to the sample vessel (11) in such a way that the level of coolant (9) is constant in the sample vessel (11). Pump (15) may help in keeping the level of coolant (9) in the sample vessel (11) constant. For this purpose the pump (15) comprises a chamber (17) with an inlet (19) and an outlet (21), a closing element (23) and a pressure increasing device (25). Therein, the inlet (19) is connectable to the reservoir (3) and the outlet (21) is connectable to a sample vessel (11) of the Dewar vessel (1). The chamber (17) is adapted to fill with coolant (9) through the inlet (19) by gravity and the closing element (23) is adapted to automatically close the chamber (17) when it is full of coolant (9). The pressure increasing device (25) is adapted to increase the pressure within the chamber (17), after the chamber (17) is closed, until the coolant (9) is released through the outlet (21).
摘要:
The present invention relates to a pump (15) for pumping a coolant (9) within a Dewar vessel (1) and to a corresponding Dewar vessel (1) for storing samples in a coolant (9). The Dewar vessel (1) comprises a thermally insulated reservoir (3) for the coolant (9) and a sample vessel (11) provided separately and arranged in the thermally insulated reservoir (3). The reservoir (3) is connected to the sample vessel (11) in such a way that the level of coolant (9) is constant in the sample vessel (11). Pump (15) may help in keeping the level of coolant (9) in the sample vessel (11) constant. For this purpose the pump (15) comprises a chamber (17) with an inlet (19) and an outlet (21), a closing element (23) and a pressure increasing device (25). Therein, the inlet (19) is connectable to the reservoir (3) and the outlet (21) is connectable to a sample vessel (11) of the Dewar vessel (1). The chamber (17) is adapted to fill with coolant (9) through the inlet (19) by gravity and the closing element (23) is adapted to automatically close the chamber (17) when it is full of coolant (9). The pressure increasing device (25) is adapted to increase the pressure within the chamber (17), after the chamber (17) is closed, until the coolant (9) is released through the outlet (21).