摘要:
In the present method, cold substances are transferred through a nozzle with moving parts. An insulating boot facilitates the method. The present method is generally suited for use in transferring cryogenic substances such as during the refueling of liquid natural gas vehicles. The present method causes an insulating layer to be created between a removable boot and a nozzle separating the ambient environment from the moving parts of the nozzle, purging the layer with a dry gas such as nitrogen to remove moisture and restricting the incursion of such moisture from the layer and therefore, from the moving parts to avoid freezing up of the moving parts. The layer can also help to avoid freezing up of the abutting interface created between the nozzle and receiving line when the nozzle is removably engaged to a receiving line.
摘要:
A heat exchanger unit having a housing into which a cryogenic liquid is introduced and permitted to evaporate and vaporize into a cryogenic cold gas. A process fluid to be cooled flows in a heat exchanger and heat exchange to cool the process fluid takes place between the cold gas and the heat exchanger, without making direct contact between the cryogenic liquid and the heat exchanger which would cause freezing. The refrigerating capacity of the cryogenic cold gas is replenished by heat exchange contact with the evaporating cryogenic liquid.
摘要:
Injection means for injecting a liquified gas such as sulphur dioxide into a container such as a wine storage tank and avoiding "icing up" the valve mechanism, wherein a three limbed "T" piece of conduit receives the liquified gas, each having a separately controlled valve, one of the limbs being connected to a source of gas which is not liquified, such as nitrogen, the nitrogen blowing the liquified sulphur dioxide gas out of the three limbed "T" piece when two of the valves are opened. The volume of the "T" piece accurately determined the dosage of sulphur dioxide.
摘要:
An easily maintainable interface for magnet dewars which includes a low h leakage disconnect fitting that retains the vacuum integrity of both the dewar and the transfer line is provided. The fitting includes a bayonet-type insert having separate coils disposed about a central conduit for cooling or heating the unit depending upon intended use. Liquid helium is introduced axially through the bayonet which is adjustable to a purge position wherein either gaseous or liquid helium may be introduced to clean, heat or cool the unit, or a flow position wherein liquid helium is passed through the bayonet into the supply line.
摘要:
1,214,055. Carrying liquefied gases. CONCH OCEAN Ltd. 3 Jan., 1969 [21 Feb., 1968], No. 8362/68. Headings B7A, B7M and B7S. [Also in Division F4] In a tanker for carrying liquefied gases, a fluid-tight tank 4 in hold 3 is externally insulated by thermal insulation 7 between the tank and the walls of the hold, the outer parts of the insulation adjacent the walls of the hold being formed with passages through which any water present may pass, the water being able to drain into sumps 11 near the bottom of the hold for removal through pipes 12 by pump 13. In the embodiments described the outer part of the insulation consists of timber fixing strips 6, 6 1 secured to the inner surface of the hold, the fixing strips being slotted as at 6a, 6b, 6c for the passage of the water.
摘要:
A vehicle including: a tank configured to be filled with fuel gas; a receptacle configured to be connected to a nozzle included in a fuel gas filling apparatus; a filling passage configured to provide communication between the receptacle and the tank; a heating unit configured to heat the receptacle; a determination unit configured to determine whether or not a parameter value, correlated with a filling speed of the fuel gas filled into the tank from the fuel gas filling apparatus, indicates decrease in the filling speed during filling of the fuel gas into the tank; and a control unit configured to, when the determination unit determines that the parameter value indicates decrease in the filling speed during filling of the fuel gas into the tank, to cause the heating unit to start heating of the receptacle during filling of the fuel gas into the tank.
摘要:
The present invention relates to a pump (15) for pumping a coolant (9) within a Dewar vessel (1) and to a corresponding Dewar vessel (1) for storing samples in a coolant (9). The Dewar vessel (1) comprises a thermally insulated reservoir (3) for the coolant (9) and a sample vessel (11) provided separately and arranged in the thermally insulated reservoir (3). The reservoir (3) is connected to the sample vessel (11) in such a way that the level of coolant (9) is constant in the sample vessel (11). Pump (15) may help in keeping the level of coolant (9) in the sample vessel (11) constant. For this purpose the pump (15) comprises a chamber (17) with an inlet (19) and an outlet (21), a closing element (23) and a pressure increasing device (25). Therein, the inlet (19) is connectable to the reservoir (3) and the outlet (21) is connectable to a sample vessel (11) of the Dewar vessel (1). The chamber (17) is adapted to fill with coolant (9) through the inlet (19) by gravity and the closing element (23) is adapted to automatically close the chamber (17) when it is full of coolant (9). The pressure increasing device (25) is adapted to increase the pressure within the chamber (17), after the chamber (17) is closed, until the coolant (9) is released through the outlet (21).
摘要:
Methods and systems for recovering, storing, transporting, and using compressed gas (such as methane gas and conventional Natural Gas) are disclosed. Exemplary methods generally involve transferring gas from a source to a subterranean capacitor and storing the gas in the capacitor and transferring gas from the subterranean capacitor to a transport or refueling tanker.
摘要:
An oxygen liquefier system may be configured to defrost an oxygen line included therein. The system may include one or more sieve beds, a liquid oxygen reservoir, an oxygen line, a controller, a heating apparatus, and/or other components. The one or more sieve beds are configured to extract oxygen from air obtained from an ambient environment. The liquid oxygen reservoir is configured to store oxygen extracted at the one or more sieve beds that has been liquefied. The oxygen line is configured to provide fluid communication between the one or more sieve beds and the liquid oxygen reservoir. The controller is configured to detect a blockage caused by frozen liquid within the oxygen line based on a liquid oxygen production rate. The heating apparatus is configured to defrost the oxygen line to melt frozen liquid within the oxygen line responsive to the detection of the blockage.