Abstract:
A hanging droplet plate (1) comprises a predetermined number of droplet compartments (10) each being capable of receiving a droplet of a liquid. The respective droplet compartment (10) comprises a circumferential microfluidic wetting barrier (102) which is arranged to surround a respective cavity (100) and which prevents a droplet from spreading beyond the microfluidic wetting barrier (102). The respective compartment (10) comprises a closed bottom (101) and at least one additional circumferential microfluidic wetting barrier (104), each additional circumferential microfluidic wetting barrier (104) which is arranged to surround a preceding circumferential microfluidic wetting barrier (102). A wettable area (103) is arranged between two adjacently arranged microfluidic wetting barriers (102, 104).
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Abstract:
The present invention pertains to a method for obtaining and analyzing solids, preferably crystals, which method comprises the following steps: providing a well plate, the well plate comprising a plurality of wells, each of the wells having a depth and an open upper end and each of the wells being provided with a filter having pores, which filter is arranged at a distance below the open upper end, each of the wells having an upper inner wall part above the filter that has a fluid contact surface and each filter having a top filter surface, at least both the fluid contact surface of the well and the top filter surface being of a material that is at least substantially inert for organic and/or aqueous solvents and/or mixtures of organic and aqueous solvents, providing one or more substances and one or more solvents in at least one of the wells of the well plate, applying conditions to dissolve the one or more substances in the one or more solvents; applying conditions for crystallizing at least a part of the substance so that solids are formed in the at least one well, substantially removing the part of the substance that remains in solution, thereby leaving the solids, preferably crystals, that were formed from the substance in the well of the well plate in which they were formed, performing further investigation of the solids, preferably crystals in the well of the well plate where they were formed.
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Abstract:
The present invention provides for microfluidic devices and methods for their use. The invention further provides for apparatus and systems for using the microfluidic devices, analyze reactions carried out in the microfluidic devices, and systems to generate, store, organize, and analyze data generated from using the microfluidic devices. The invention further provides methods of using and making microfluidic systems and devices which, in some embodiments, are useful for crystal formation. In one embodiment, an apparatus includes a platen having a platen face with one or more fluid ports therein. The fluid ports spatially correspond to one or more wells on a surface of the microfluidic device. A platform for holding the microfluidic device relative to the platen is included, and a platen actuator for urging the platen against the microfluidic device so that at least one of the fluid ports of the platen is urged against one of the wells to form a pressure chamber comprising the well and the port, so that when pressurized fluid is introduced or removed into or from the pressure chamber through one of the ports, fluid pressure is changed therein.
Abstract:
A reaction station for performing parallel synthesis with magnetic stirring. The device is capable of accommodating a plurality of reaction vessels being specifically adapted so that when placed in a magnetic field, such as that generated by a laboratory magnetic stirrer, any reaction vessel accommodated by the device is in an effective position for stirring with respect to the magnetic field.
Abstract:
A system and method for integrating microfluidic components in a microfluidic system enables the microfluidic system to perform a selected microfluidic function. A capping module includes a microfluidic element for performing a microfluidic function. The capping module is stacked on a microfluidic substrate having microfluidic plumbing to incorporate the microfluidic function into the system. An infusion pump for delivering a fluid from a fluid source may be integrated in a microfluidic chip using a capping module having pumping components formed therein.
Abstract:
In accordance with the present invention, a vapor equilibrium apparatus for growing and screening suitable protein crystals is provided which consists of a plastic tray having a plurality of roughly cylindrical chambers that act as reservoirs for vapor equilibrating solutions and include a plurality of rib members having flattened upper ends recessed from the top of the chamber which form retaining levels wherein glass cover slips can be retained horizontally across the chambers in order to carry out the vapor equilibrating process. The upper ends can also be formed in a step-shaped fashion so as to provide multiple retaining levels of differing inner diameters which can retain glass cover slips of different sizes in the same chamber. The crystal growth tray of the invention is particularly advantageous in that it can be used in a variety of different methods for growing crystals using vapor diffusion or equilibration, and the device is sealable with clear plastic tape which avoids the problems associated with the prior use of silicon grease or oil. In addition, the tray of the invention allows for easy visual inspection and rapid removal of the crystals, and is highly effective in allowing the growth of large, high-quality crystals whose structure can be determined using state-of-the-art high resolution X-ray crystallography.
Abstract:
A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.
Abstract:
Process of crystal growth by diffusion, particularly intended to be carried out on board a space vessel and according to which a substance (5) to be crystallized, contained in a crucible (4), is brought into presence with a precipitating agent (9) through a diffusion wall (6) obturating said crucible. According to the invention:in a first recipient (1) is arranged said crucible (4) containing the substance to be crystallized and obturated by said wall;said first recipient (1) is obturated by a stopper (3) of porous material;in a second recipient (12) is arranged a porous body (19);said first and second recipients are brought together so that said porous body and said stopper of porous material are in contact with each other; andsaid precipitating agent is injected into said porous body (19) of said second recipient (12) through (15).