-
公开(公告)号:US11926795B2
公开(公告)日:2024-03-12
申请号:US17496592
申请日:2021-10-07
Inventor: Changmin Chun , Wesley Sattler , Joseph E. Gatt , Keith R. Hajkowski , Everett J. O'Neal , William R. Gunther , Anastasios Skoulidas
IPC: C01B3/38 , B01J8/00 , B01J21/04 , B01J23/00 , B01J23/10 , B01J23/46 , B01J23/755 , B01J29/74 , B01J35/00 , B01J35/04 , B01J35/10 , B01J37/03 , B01J37/04 , B01J37/08 , B01J38/12 , C01B3/40 , C10G11/04 , C10G11/22
CPC classification number: C10G11/04 , B01J8/008 , B01J21/04 , B01J23/002 , B01J23/10 , B01J23/464 , B01J23/755 , B01J29/74 , B01J35/0006 , B01J35/04 , B01J35/1009 , B01J35/1014 , B01J37/038 , B01J37/04 , B01J37/082 , B01J38/12 , C01B3/382 , C01B3/384 , C01B3/40 , C10G11/22 , B01J2208/00017 , B01J2208/00548 , C01B2203/0233 , C01B2203/0811 , C01B2203/1058 , C01B2203/1064 , C10G2300/70
Abstract: Catalyst systems are provided for reforming of hydrocarbons, along with methods for using such catalyst systems. The catalyst systems can be deposited or otherwise coated on a surface or structure, such as a monolith, to achieve improved activity and/or structural stability. The metal oxide support layer can correspond to a thermally stable metal oxide support layer, such as a metal oxide support layer that is thermally phase stable at temperatures of 800° C. to 1600° C. The catalyst systems can be beneficial for use in cyclical reaction environments, such as reverse flow reactors or other types of reactors that are operated using flows in opposing directions and different times within a reaction cycle.
-
公开(公告)号:US20230087627A1
公开(公告)日:2023-03-23
申请号:US17904552
申请日:2021-01-19
Inventor: Matthew T. Kapelewski , Joseph E. Gatt , Aaron W. Peters , Wesley Sattler , Thomas J. Ferro
Abstract: Provided herein are methods of making an adsorbent bed useful as a micro-reactor, or a catalytic and/or separation device. The adsorbent bed comprises a metal-organic framework composite. In the present methods, one or more metal-organic frameworks in powder form are mixed in a liquid to produce a metal-organic framework suspension or other type of metal-organic framework coating. A monolith is coated with the suspension or coating to provide the metal-organic framework composite having at least one metal-organic framework coating layer deposited on and bounded to the monolith. The metal-organic framework composite produced has a BET surface area of about 1 m2/g to about 300 m2/g and/or a comparative BET surface area of about 40% to about 100% relative to the metal-organic framework monolith, and pore size between about 1 nm and about 50 nm.
-
公开(公告)号:US11560307B2
公开(公告)日:2023-01-24
申请号:US16838654
申请日:2020-04-02
Inventor: Everett J. O'Neal , Anastasios I. Skoulidas , Joseph E. Gatt
Abstract: Systems and methods are provided for hydrogenation of CO2 in a reverse flow reactor environment via a reverse water gas shift reaction. A reverse flow reactor environment is suitable for performing endothermic reactions at high temperatures, where a reactant flow is passed into the reactor in a first portion of the cycle in a first flow direction while a combustion or heating flow is passed into the reactor during a second portion of the reaction cycle from the opposite direction. This can allow for efficient heating of surfaces within the reactor to provide heat for the endothermic reverse water gas shift reaction while reducing or minimizing incorporation of combustion products into the desired reaction products.
-
4.
公开(公告)号:US20230135668A1
公开(公告)日:2023-05-04
申请号:US17907748
申请日:2021-02-19
Inventor: Micaela Taborga Claure , Doron Levin , Joseph E. Gatt , Scott Weigel , Pedro M. Serna Merino
IPC: B01J29/035 , B01J29/00 , C10G45/54
Abstract: A catalyst may include a metallic function derived from a metal constrained within cages and/or channels of a microporous material, wherein the cages and/or channels of the microporous material are defined by 8 tetrahedral atoms or fewer; and an acidic function derived from an additional zeolite having cages and/or channels defined by 10 or more tetrahedral atoms, wherein the microporous material providing the metallic function and additional zeolite providing the acidic function are coupled by a binder.
-
公开(公告)号:US11597885B2
公开(公告)日:2023-03-07
申请号:US17364989
申请日:2021-07-01
Inventor: Xiaochun Xu , Xinrui Yu , Shifang Luo , Randolph J. Smiley , Joseph E. Gatt
Abstract: Methods of refining a whole crude oil stream. The methods involve first processing the crude either through a hydrotreating reactor comprising a dewaxing reactor bed or a flash evaporation separator. The treated streams are then further processed through a demetalization reactor bed, a hydroprocessing reactor bed, or both. The stream can then be still further processed via additional hydrotreating, distillation, or both.
-
6.
公开(公告)号:US12145136B2
公开(公告)日:2024-11-19
申请号:US17907748
申请日:2021-02-19
Inventor: Micaela Taborga Claure , Doron Levin , Joseph E. Gatt , Scott Weigel , Pedro M. Serna Merino
IPC: B01J29/035 , B01J29/00 , C10G45/54
Abstract: A catalyst may include a metallic function derived from a metal constrained within cages and/or channels of a microporous material, wherein the cages and/or channels of the microporous material are defined by 8 tetrahedral atoms or fewer; and an acidic function derived from an additional zeolite having cages and/or channels defined by 10 or more tetrahedral atoms, wherein the microporous material providing the metallic function and additional zeolite providing the acidic function are coupled by a binder.
-
公开(公告)号:US11859133B2
公开(公告)日:2024-01-02
申请号:US17496644
申请日:2021-10-07
Inventor: Wesley Sattler , Keith R. Hajkowski , Changmin Chun , Partha Nandi , Vera Grankina , Joseph E. Gatt , Ning Ma , Anastasios Skoulidas , William R. Gunther , Everett J. O'Neal
IPC: C10G11/04 , C10G11/22 , B01J35/04 , B01J21/04 , B01J23/755 , B01J38/12 , B01J8/00 , B01J23/00 , B01J23/10 , B01J23/46 , B01J29/74 , B01J35/00 , B01J35/10 , B01J37/03 , B01J37/04 , B01J37/08 , C01B3/38 , C01B3/40
CPC classification number: C10G11/04 , B01J8/008 , B01J21/04 , B01J23/002 , B01J23/10 , B01J23/464 , B01J23/755 , B01J29/74 , B01J35/0006 , B01J35/04 , B01J35/1009 , B01J35/1014 , B01J37/038 , B01J37/04 , B01J37/082 , B01J38/12 , C01B3/382 , C01B3/384 , C01B3/40 , C10G11/22 , B01J2208/00017 , B01J2208/00548 , C01B2203/0233 , C01B2203/0811 , C01B2203/1058 , C01B2203/1064 , C10G2300/70
Abstract: Systems and methods are provided for using size-reversing materials in vessels where direct heating is used to at least partially provide heat for reforming reactions under cyclic reforming conditions. An example of a size-reversing material is the combination of NiO and Al2O3. It has been discovered that size-reversing materials can undergo a phase transition that can assist with re-dispersion of metal at elevated temperatures. This can assist with maintaining catalytic activity for reforming over longer time periods in the presence of cyclic reforming conditions.
-
-
-
-
-
-